Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nutrients ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004105

RESUMEN

AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.


Asunto(s)
Glutamina , Condicionamiento Físico Animal , Ratas , Animales , Glutamina/farmacología , Glutamina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Wistar , Músculo Esquelético/metabolismo , Hipertrofia , Suplementos Dietéticos , Glutamatos/farmacología , Condicionamiento Físico Animal/fisiología
2.
Nutrients, v.15, n. 22. 4711, nov. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5168

RESUMEN

Aim: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. Methods: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. Results: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. Conclusion: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.

3.
Front Nutr ; 9: 947458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110404

RESUMEN

Several studies have demonstrated that a maternal low-protein diet induces long-term metabolic disorders, but the involved mechanisms are unclear. This study investigated the molecular effects of a low-protein diet during pregnancy and lactation on glucose and protein metabolism in soleus muscle isolated from adult male rats. Female rats were fed either a normal protein diet or low-protein diet during gestation and lactation. After weaning, all pups were fed a normal protein diet until the 210th day postpartum. In the 7th month of life, mass, contractile function, protein and glucose metabolism, and the Akt-mTOR pathway were measured in the soleus muscles of male pups. Dry weight and contractile function of soleus muscle in the low-protein diet group rats were found to be lower compared to the control group. Lipid synthesis was evaluated by measuring palmitate incorporation in white adipose tissue. Palmitate incorporation was higher in the white adipose tissue of the low-protein diet group. When incubated soleus muscles were stimulated with insulin, protein synthesis, total amino acid incorporation and free amino acid content, glucose incorporation and uptake, and glycogen synthesis were found to be reduced in low-protein diet group rats. Fasting glycemia was higher in the low-protein diet group. These metabolic changes were associated with a decrease in Akt and GSK-3ß signaling responses to insulin and a reduction in RPS6 in the absence of the hormone. There was also notably lower expression of Akt in the isolated soleus muscle of low-protein diet group rats. This study is the first to demonstrate how maternal diet restriction can reduce skeletal muscle protein and mass by downregulating the Akt-mTOR pathway in adulthood.

4.
Nat Commun ; 13(1): 1343, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292630

RESUMEN

Meta-analyses suggest that yogurt consumption reduces type 2 diabetes incidence in humans, but the molecular basis of these observations remains unknown. Here we show that dietary yogurt intake preserves whole-body glucose homeostasis and prevents hepatic insulin resistance and liver steatosis in a dietary mouse model of obesity-linked type 2 diabetes. Fecal microbiota transplantation studies reveal that these effects are partly linked to the gut microbiota. We further show that yogurt intake impacts the hepatic metabolome, notably maintaining the levels of branched chain hydroxy acids (BCHA) which correlate with improved metabolic parameters. These metabolites are generated upon milk fermentation and concentrated in yogurt. Remarkably, diet-induced obesity reduces plasma and tissue BCHA levels, and this is partly prevented by dietary yogurt intake. We further show that BCHA improve insulin action on glucose metabolism in liver and muscle cells, identifying BCHA as cell-autonomous metabolic regulators and potential mediators of yogurt's health effects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Fermentación , Hidroxiácidos/farmacología , Ratones , Ratones Obesos , Yogur
5.
FEBS Open Bio ; 4: 141-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24490138

RESUMEN

Dehydroepiandrosterone (DHEA) and the dehydroepiandrosterone sulfate (DHEA-S) are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX) female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS) and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

6.
Endocrinology ; 155(3): 1145-56, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24424051

RESUMEN

Iodide (I(-)) is an irreplaceable constituent of thyroid hormones and an important regulator of thyroid function, because high concentrations of I(-) down-regulate sodium/iodide symporter (NIS) expression and function. In thyrocytes, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) cascade also inhibits NIS expression and function. Because I(-) excess and PI3K/Akt signaling pathway induce similar inhibitory effects on NIS expression, we aimed to study whether the PI3K/Akt cascade mediates the acute and rapid inhibitory effect of I(-) excess on NIS expression/activity. Here, we reported that the treatment of PCCl3 cells with I(-) excess increased Akt phosphorylation under normal or TSH/insulin-starving conditions. I(-) stimulated Akt phosphorylation in a PI3K-dependent manner, because the use of PI3K inhibitors (wortmannin or 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) abrogated the induction of I(-) effect. Moreover, I(-) inhibitory effect on NIS expression and function were abolished when the cells were previously treated with specific inhibitors of PI3K or Akt (Akt1/2 kinase inhibitor). Importantly, we also found that the effect of I(-) on NIS expression involved the generation of reactive oxygen species (ROS). Using the fluorogenic probes dihydroethidium and mitochondrial superoxide indicator (MitoSOX Red), we observed that I(-) excess increased ROS production in thyrocytes and determined that mitochondria were the source of anion superoxide. Furthermore, the ROS scavengers N-acetyl cysteine and 2-phenyl-1,2-benzisoselenazol-3-(2H)-one blocked the effect of I(-) on Akt phosphorylation. Overall, our data demonstrated the involvement of the PI3K/Akt signaling pathway as a novel mediator of the I(-)-induced thyroid autoregulation, linking the role of thyroid oxidative state to the Wolff-Chaikoff effect.


Asunto(s)
Regulación de la Expresión Génica , Yoduros/química , Transducción de Señal , Simportadores/metabolismo , Glándula Tiroides/metabolismo , Animales , Aniones , Biotinilación , Línea Celular , Inhibidores Enzimáticos/farmacología , Insulina/metabolismo , Mitocondrias/metabolismo , Oxígeno/química , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno , Superóxidos/metabolismo
7.
Cell Physiol Biochem ; 30(5): 1169-80, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23171868

RESUMEN

BACKGROUND: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. METHODS: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-ĸB) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. RESULTS: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-ĸB activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. CONCLUSIONS: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content.


Asunto(s)
Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/biosíntesis , Ácido Palmítico/farmacología , Superóxidos/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Músculo Esquelético/citología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Nitroarginina/farmacología , Ácido Palmítico/antagonistas & inhibidores , Ratas , Ratas Wistar , Relación Estructura-Actividad
8.
Eur J Appl Physiol ; 112(7): 2531-7, 2012 07.
Artículo en Inglés | MEDLINE | ID: mdl-22075640

RESUMEN

Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Suplementos Dietéticos , Glucógeno/metabolismo , Fatiga Muscular/fisiología , Fuerza Muscular/fisiología , Valeratos/administración & dosificación , Administración Oral , Animales , Masculino , Tasa de Depuración Metabólica/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
9.
Stem Cell Rev Rep ; 8(2): 363-74, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21874281

RESUMEN

The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-α, IL-6 and oxidative stress measured by Amplex(®) reagent were observed. The level of TGF-ß1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.


Asunto(s)
Distrofina/deficiencia , Inflamación/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Neovascularización Fisiológica , Tejido Adiposo/citología , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Distrofina/metabolismo , Mediadores de Inflamación/metabolismo , Inyecciones , Macrófagos/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular Animal/terapia , Miogenina/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Free Radic Biol Med ; 48(7): 953-60, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20080177

RESUMEN

Contractile activity induces a marked increase in glycolytic activity and gene expression of enzymes and transporters involved in glucose metabolism in skeletal muscle. Muscle contraction also increases the production of reactive oxygen species (ROS). In this study, the effects of treatment with N-acetylcysteine (NAC), a potent antioxidant compound, on contraction-stimulated glycolysis were investigated in electrically stimulated primary rat skeletal muscle cells. The following parameters were measured: 2-[(3)H]deoxyglucose (2-DG) uptake; activities of hexokinase, phosphofructokinase (PFK), and glucose-6-phosphate dehydrogenase (G6PDH); lactate production; and expression of the glucose transporter 4 (GLUT4), hexokinase II (HKII), and PFK genes after one bout of electrical stimulation in primary rat myotubes. NAC treatment decreased ROS signal by 49% in resting muscle cells and abolished the muscle contraction-induced increase in ROS levels. In resting cells, NAC decreased mRNA and protein contents of GLUT4, mRNA content and activity of PFK, and lactate production. NAC treatment suppressed the contraction-mediated increase in 2-DG uptake; lactate production; hexokinase, PFK, and G6PDH activities; and gene expression of GLUT4, HKII, and PFK. Similar to muscle contraction, exogenous H(2)O(2) (500 nM) administration increased 2-DG uptake; lactate production; hexokinase, PFK, and G6PDH activities; and gene expression of GLUT4, HKII, and PFK. These findings support the proposition that ROS endogenously produced play an important role in the changes in glycolytic activity and gene expression of GLUT4, HKII, and PFK induced by contraction in skeletal muscle cells.


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Células Cultivadas , Desoxiglucosa/metabolismo , Estimulación Eléctrica , Glucosa/genética , Transportador de Glucosa de Tipo 4/genética , Glucosafosfato Deshidrogenasa/metabolismo , Glucólisis/efectos de los fármacos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/patología , Fosfofructoquinasa-1 Tipo Muscular/genética , Fosfofructoquinasa-1 Tipo Muscular/metabolismo , Ratas
11.
Ciênc. cuid. saúde ; 7(supl.1): 39-44, maio 2008. tab
Artículo en Portugués | LILACS, BDENF - Enfermería | ID: lil-528405

RESUMEN

O objetivo deste estudo foi identificar as alterações no peso e na composição corporal relacionadas à inclusão da dieta de cafeteria e treinamento físico aeróbio em diferentes fases do desenvolvimento. Foram utilizados ratos da linhagem wistar divididos em dois procedimentos experimentais, sendo um iniciado com dieta decafeteria e treinamento físico com animais aos 21 dias de vida (sedentários cafeteria, SCa21; treinado cafeteria,TCa21; sedentário controle, SC21 e treinado controle TC21) e outro com dieta de cafeteria e treinamento físico iniciando aos 60 dias de vida (sedentários cafeteria, SCa; treinado cafeteria, TCa; sedentário controle, SC e treinado controle TC). Após o procedimento experimental, além do peso corporal, foram coletados os estoques de tecido adiposo periepididimal, retroperitonial e mesentérico. Os resultados demonstraram relação direta entre inatividade física, dieta de cafeteria e elevação do peso e dos estoques de tecido adiposo das regiõesestudadas. Também se obteve uma resposta positiva à inclusão do treinamento físico aos 21 dias ao compará-lo ao grupo que iniciou treinamento físico após os 60 dias, porém o efeito da dieta alimentar é primordial na manutenção de um peso e composição corporal adequados.


The objective of this study was to identify the alterations in body weight and body composition related to the inclusion of cafeteria diet and aerobic physical training in different phases of the development. Wistar rats were used and divided in two experimental procedures, being one initiating with cafeteria diet and physical training with animals to the 21 days of life (sedentary cafeteria, SCa21; trained cafeteria, TCa21; sedentary control, SC21and trained control TC21) and another one with cafeteria diet and physical training initiating to the 60 days of life(sedentary cafeteria, SCa; trained cafeteria, TCa; sedentary control, SC and trained control TC). After the experimental procedure, beyond the body weight, had been collected the periepididymal, retroperitoneal andmesenteric fat pads. The results had demonstrated a direct relation between physical inactivity, cafeteria diet andrise of the weight and fat pads of the studied regions. Also we got a positive reply to the inclusion of the physical training to the 21 days to it compares the group that after initiated physical training the 60 days, however the effect of the alimentary diet is primordial in the maintenance of one adjusted weight and corporal composition.


El objetivo de este estudio fue identificar las alteraciones en el peso corporal y en la composición corporal relacionadas a la inclusión de la dieta de la cafetería y entrenamiento físico aerobio en diversas fases del desarrollo. Fueron utilizados ratones de Wistar divididos en dos procedimientos experimentales, siendo uno iniciado con dieta de la cafetería y entrenamiento físico con animales a los 21 días de vida (sedentarios cafetería, SCa21; entrenado cafetería, TCa21; sedentario control, SC21 y entrenado control TC21) y otro condieta de cafetería y entrenamiento físico iniciando a los 60 días de vida (sedentarios cafetería, SCa; entrenado cafetería, TCa; sedentario control, SC y entrenado control TC). Después del procedimiento experimental, además del peso corporal, fueron recogidas las reservas de tejido adiposo periepididimal, retroperitonial ymesentéricos. Los resultados demostraron una relación directa entre inactividad física, dieta de cafetería y elevación del peso y de las reservas de tejido adiposo de las regiones estudiadas. También se obtuvo una respuesta positiva a la inclusión del entrenamiento físico a los 21 días al comparar lo al grupo que inició entrenamiento físico después de los 60 días, pero el efect de la dieta alimentaria es primordial en el mantenimiento de un peso y composición corporal adecuados.


Asunto(s)
Animales , Ratas , Adiposidad , Dieta , Estudios Transversales , Ejercicio Físico , Obesidad , Peso Corporal , Sobrepeso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...