Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J C Part Fields ; 84(3): 241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463614

RESUMEN

Machine learning-based anomaly detection (AD) methods are promising tools for extending the coverage of searches for physics beyond the Standard Model (BSM). One class of AD methods that has received significant attention is resonant anomaly detection, where the BSM physics is assumed to be localized in at least one known variable. While there have been many methods proposed to identify such a BSM signal that make use of simulated or detected data in different ways, there has not yet been a study of the methods' complementarity. To this end, we address two questions. First, in the absence of any signal, do different methods pick the same events as signal-like? If not, then we can significantly reduce the false-positive rate by comparing different methods on the same dataset. Second, if there is a signal, are different methods fully correlated? Even if their maximum performance is the same, since we do not know how much signal is present, it may be beneficial to combine approaches. Using the Large Hadron Collider (LHC) Olympics dataset, we provide quantitative answers to these questions. We find that there are significant gains possible by combining multiple methods, which will strengthen the search program at the LHC and beyond.

2.
J High Energy Phys ; 2023(2): 220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36852337

RESUMEN

We explore the use of Quantum Machine Learning (QML) for anomaly detection at the Large Hadron Collider (LHC). In particular, we explore a semi-supervised approach in the four-lepton final state where simulations are reliable enough for a direct background prediction. This is a representative task where classification needs to be performed using small training datasets - a regime that has been suggested for a quantum advantage. We find that Classical Machine Learning (CML) benchmarks outperform standard QML algorithms and are able to automatically identify the presence of anomalous events injected into otherwise background-only datasets.

3.
Phys Rev Lett ; 129(8): 082001, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36053691

RESUMEN

Calibration is a common experimental physics problem, whose goal is to infer the value and uncertainty of an unobservable quantity Z given a measured quantity X. Additionally, one would like to quantify the extent to which X and Z are correlated. In this Letter, we present a machine learning framework for performing frequentist maximum likelihood inference with Gaussian uncertainty estimation, which also quantifies the mutual information between the unobservable and measured quantities. This framework uses the Donsker-Varadhan representation of the Kullback-Leibler divergence-parametrized with a novel Gaussian ansatz-to enable a simultaneous extraction of the maximum likelihood values, uncertainties, and mutual information in a single training. We demonstrate our framework by extracting jet energy corrections and resolution factors from a simulation of the CMS detector at the Large Hadron Collider. By leveraging the high-dimensional feature space inside jets, we improve upon the nominal CMS jet resolution by upward of 15%.

4.
Phys Rev Lett ; 127(21): 212001, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860088

RESUMEN

Simulating the full dynamics of a quantum field theory over a wide range of energies requires exceptionally large quantum computing resources. Yet for many observables in particle physics, perturbative techniques are sufficient to accurately model all but a constrained range of energies within the validity of the theory. We demonstrate that effective field theories (EFTs) provide an efficient mechanism to separate the high energy dynamics that is easily calculated by traditional perturbation theory from the dynamics at low energy and show how quantum algorithms can be used to simulate the dynamics of the low energy EFT from first principles. As an explicit example we calculate the expectation values of vacuum-to-vacuum and vacuum-to-one-particle transitions in the presence of a time-ordered product of two Wilson lines in scalar field theory, an object closely related to those arising in EFTs of the standard model of particle physics. Calculations are performed using simulations of a quantum computer as well as measurements using the IBMQ Manhattan machine.

5.
Rep Prog Phys ; 84(12)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34736231

RESUMEN

A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.


Asunto(s)
Aprendizaje Automático , Aprendizaje Automático Supervisado , Humanos , Fenómenos Físicos , Física
6.
Curr Biol ; 31(20): 4571-4583.e4, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34473948

RESUMEN

Memory enables access to past experiences to guide future behavior. Humans can determine which memories to trust (high confidence) and which to doubt (low confidence). How memory retrieval, memory confidence, and memory-guided decisions are related, however, is not understood. In particular, how confidence in memories is used in decision making is unknown. We developed a spatial memory task in which rats were incentivized to gamble their time: betting more following a correct choice yielded greater reward. Rat behavior reflected memory confidence, with higher temporal bets following correct choices. We applied machine learning to identify a memory decision variable and built a generative model of memories evolving over time that accurately predicted both choices and confidence reports. Our results reveal in rats an ability thought to exist exclusively in primates and introduce a unified model of memory dynamics, retrieval, choice, and confidence.


Asunto(s)
Toma de Decisiones , Memoria , Animales , Conducta de Elección , Ratas , Recompensa
7.
Phys Rev Lett ; 126(6): 062001, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33635685

RESUMEN

Simulating quantum field theories is a flagship application of quantum computing. However, calculating experimentally relevant high energy scattering amplitudes entirely on a quantum computer is prohibitively difficult. It is well known that such high energy scattering processes can be factored into pieces that can be computed using well established perturbative techniques, and pieces which currently have to be simulated using classical Markov chain algorithms. These classical Markov chain simulation approaches work well to capture many of the salient features, but cannot capture all quantum effects. To exploit quantum resources in the most efficient way, we introduce a new paradigm for quantum algorithms in field theories. This approach uses quantum computers only for those parts of the problem which are not computable using existing techniques. In particular, we develop a polynomial time quantum final state shower that accurately models the effects of intermediate spin states similar to those present in high energy electroweak showers with a global evolution variable. The algorithm is explicitly demonstrated for a simplified quantum field theory on a quantum computer.

8.
Phys Rev Lett ; 127(27): 270502, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061411

RESUMEN

A significant problem for current quantum computers is noise. While there are many distinct noise channels, the depolarizing noise model often appropriately describes average noise for large circuits involving many qubits and gates. We present a method to mitigate the depolarizing noise by first estimating its rate with a noise-estimation circuit and then correcting the output of the target circuit using the estimated rate. The method is experimentally validated on a simulation of the Heisenberg model. We find that our approach in combination with readout-error correction, randomized compiling, and zero-noise extrapolation produces close to exact results even for circuits containing hundreds of CNOT gates. We also show analytically that zero-noise extrapolation is improved when it is applied to the output of our method.

9.
Phys Rev Lett ; 124(18): 182001, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441957

RESUMEN

Collider data must be corrected for detector effects ("unfolded") to be compared with many theoretical calculations and measurements from other experiments. Unfolding is traditionally done for individual, binned observables without including all information relevant for characterizing the detector response. We introduce OmniFold, an unfolding method that iteratively reweights a simulated dataset, using machine learning to capitalize on all available information. Our approach is unbinned, works for arbitrarily high-dimensional data, and naturally incorporates information from the full phase space. We illustrate this technique on a realistic jet substructure example from the Large Hadron Collider and compare it to standard binned unfolding methods. This new paradigm enables the simultaneous measurement of all observables, including those not yet invented at the time of the analysis.

10.
Phys Rev Lett ; 122(23): 231803, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31298902

RESUMEN

In the context of the standard model of particle physics, the relationship between the top-quark mass and width (Γ_{t}) has been precisely calculated. However, the uncertainty from current direct measurements of the width is nearly 50%. A new approach for directly measuring the top-quark width using events away from the resonance peak is presented. By using an orthogonal dataset to traditional top-quark width extractions, this new method may enable significant improvements in the experimental sensitivity in a method combination. Recasting a recent ATLAS differential cross section measurement, we find Γ_{t}=1.28±0.30 GeV (1.33±0.29 GeV expected), providing the most precise direct measurement of the width.

11.
Phys Rev Lett ; 120(4): 042003, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29437460

RESUMEN

Physicists at the Large Hadron Collider (LHC) rely on detailed simulations of particle collisions to build expectations of what experimental data may look like under different theoretical modeling assumptions. Petabytes of simulated data are needed to develop analysis techniques, though they are expensive to generate using existing algorithms and computing resources. The modeling of detectors and the precise description of particle cascades as they interact with the material in the calorimeter are the most computationally demanding steps in the simulation pipeline. We therefore introduce a deep neural network-based generative model to enable high-fidelity, fast, electromagnetic calorimeter simulation. There are still challenges for achieving precision across the entire phase space, but our current solution can reproduce a variety of particle shower properties while achieving speedup factors of up to 100 000×. This opens the door to a new era of fast simulation that could save significant computing time and disk space, while extending the reach of physics searches and precision measurements at the LHC and beyond.

12.
Phys Rev Lett ; 121(24): 241803, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608762

RESUMEN

Despite extensive theoretical motivation for physics beyond the standard model (BSM) of particle physics, searches at the Large Hadron Collider have found no significant evidence for BSM physics. Therefore, it is essential to broaden the sensitivity of the search program to include unexpected scenarios. We present a new model-agnostic anomaly detection technique that naturally benefits from modern machine learning algorithms. The only requirement on the signal for this new procedure is that it is localized in at least one known direction in phase space. Any other directions of phase space that are uncorrelated with the localized one can be used to search for unexpected features. This new method is applied to the dijet resonance search to show that it can turn a modest 2σ excess into a 7σ excess for a model with an intermediate BSM particle that is not currently targeted by a dedicated search.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...