Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36978571

RESUMEN

Inclusion of microbial fermented soybean meal in broiler feed has induced advantageous outcomes for their performance and gastrointestinal health via exhibiting probiotic effects. In this study, soybean meal (SBM) was subjected to double-stage microbial fermentation utilizing functional metabolites of fungi and bacteria. In broiler diet, DFSBM replaced SBM by 0, 25, 50 and 100%. DFSBM was reported to have higher protein content and total essential, nonessential and free amino acids (increased by 3.67%, 12.81%, 10.10% and 5.88-fold, respectively, compared to SBM). Notably, phytase activity and lactic acid bacteria increased, while fiber, lipid and trypsin inhibitor contents were decreased by 14.05%, 38.24% and 72.80%, respectively, in a diet containing 100% DFSBM, compared to SBM. Improved growth performance and apparent nutrient digestibility, including phosphorus and calcium, and pancreatic digestive enzyme activities were observed in groups fed higher DFSBM levels. In addition, higher inclusion levels of DFSBM increased blood immune response (IgG, IgM, nitric oxide and lysozyme levels) and liver antioxidant status. Jejunal amino acids- and peptide transporter-encoding genes (LAT1, CAT-1, CAT-2, PepT-1 and PepT-2) were upregulated with increasing levels of DFSBM in the ration. Breast muscle crude protein, calcium and phosphorus retention were increased, especially at higher inclusion levels of DFSBM. Coliform bacteria load was significantly reduced, while lactic acid bacteria count in broiler intestines was increased with higher dietary levels of DFSBM. In conclusion, replacement of SBM with DFSBM positively impacted broiler chicken feed utilization and boosted chickens' amino acid transportation, in addition to improving the nutritional value of their breast meat.

2.
Vet Sci ; 9(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35202296

RESUMEN

Optimal combinations of essential oils (EOs) can enhance performance and maintain poultry productivity. The effects of EOs with black pepper oil (BPO) or radish seed oil (RSO) on performance and the expression of digestive enzymes, lipogenesis, immunity, and autophagy-related genes in broiler chickens were explored. Six dietary treatments for 300 one-day-old chicks were allocated as follows: controls were fed a basal diet, one group was fed an EO-supplemented diet (1.5 g/kg diet of parsley, mint, and carrot seed oils (1:1:1)), and other groups received Eos + BPO0.25, Eos + BPO0.5, Eos + RSO0.25, and Eos + RSO0.5 treatments, with a basal diet containing EOs plus BPO or RSO at the level of 0.25 or 0.5 g/kg, respectively. Supplementation with 0.5 g/kg of EOs plus BPO or RSO resulted in the most improved maximum BWG and FCR in broiler chickens. The lactobacilli population was increased in Eos + BPO0.5, followed by EOs + RSO0.5, unlike in the control. The highest expression of the CCK and PNLIP genes was identified in the Eos + BPO group. The FAS and ACC genes were upregulated, while the IgA and IL-10 genes were downregulated, with EOs plus RSO or BPO. The group that received Eos + BPO0.5, followed by Eos + RSO0.5, displayed patterns of higher expression for atg5, atg7, and atg12, with lower expression of mTOR. In summary, a new combination of EOs with 0.5 g/kg BPO had potential growth-promoting and immune-boosting effects in broiler chickens.

3.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806904

RESUMEN

This study was conducted to compare the effects of commercially available (C) and green synthesized (GS) Zinc oxide nanoparticles (ZnO-NPs) on immunological responses of common carp (Cyprinus carpio) skin mucus. GS ZnO-NPs were generated using Thymus pubescent and characterized by UV-vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Fish (n = 150) were randomly allocated into five groups in triplicate and received a waterborne concentration of 0% (control), 25%, and 50% of LC50 96 h of commercially available (C1 and C2) and green synthesized ZnO-NPs (GS1 and GS2) for 21 days. Results from XRD displayed ZnO-NPs with 58 nm in size and UV-vis DRS, EDX, and FT-IR analysis showed that some functional groups from plant extract bonded to the surface of NPs. The SEM images showed that ZnO-NPs have conical morphology. Acute toxicity study showed a higher dose of LC5096h for green synthesized ZnO-NPs (78.9 mg.L-1) compared to the commercial source (59.95 mg.L-1). The highest activity of lysozyme and alternative complement activity (ACH50) were found in control and GS1 groups. A significant decrease in alkaline phosphatase activity (ALP) was found in C1 and C2 groups compared to other treatments. Protease activity (P) was significantly decreased in the C2 group compared to the control and GS groups. Total immunoglobulin (total Ig) content was the highest in the control. In addition, total Ig in the GS1 group was higher than GS2. The exposure to ZnO-NPs lowered total protein content in all experimental groups when compared to control. Present findings revealed lower induced immunosuppressive effects by green synthesized ZnO-NPs on key parameters of fish skin mucus.


Asunto(s)
Carpas/fisiología , Factores Inmunológicos/síntesis química , Factores Inmunológicos/farmacología , Nanopartículas del Metal/química , Moco/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Óxido de Zinc/química , Animales , Técnicas de Química Sintética , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Análisis Espectral
4.
Animals (Basel) ; 10(10)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977486

RESUMEN

The aim of the present study was to evaluate mannan oligosaccharides (MOS) or glycerol (GLY) as a carbon source on biofloc systems of Nile tilapia (O. niloticus) juveniles. Fish (n = 750) were reared in open flow (Controls) or biofloc systems (B-GLY and B-MOS) fed with a plant or fish protein source over a period of twelve weeks. Total ammonia nitrogen and nitrate decreased in the biofloc groups, while biofloc volume increased in B-MOS. Compared to the controls, B-MOS and B-GLY exhibited higher weight gain and improved feed conversion, irrespectively of the diet. Serum level of C-reactive protein was reduced, while IgM and lysozyme activity was higher in the B-MOS fish, compared to other groups. Intestinal Bacillus spp. count was increased, whereas Vibrio, Aeromonas and Pseudomonas spp. counts decreased in B-MOS reared groups, compared to the other groups. The proinflammatory cytokine (IL-8 and IFN-γ) transcript expression was upregulated in B-MOS more than B-GLY reared groups. Compared to the controls, the virulence of Aeromonas hydrophila was decreased in the B-MOS and B-GLY groups. The results indicate several benefits of using MOS as a carbon source in a biofloc Nile tilapia system; a cost benefit analysis is required to assess the economic viability of this.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...