Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Cell Biol Int ; 48(6): 883-897, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38591778

RESUMEN

Anoikis is a process of programmed cell death induced by the loss of cell/matrix interactions. In previous work, we have shown that the acquisition of anoikis resistance upregulates syndecan-4 (SDC4) expression in endothelial cells. In addition, SDC4 gene silencing by microRNA interference reverses the transformed phenotype of anoikis-resistant endothelial cells. Due to this role of SDC4 in regulating the behavior of anoikis-resistant endothelial cells, we have evaluated that the functional consequences of SDC4 silencing in the extracellular matrix (ECM) remodeling in anoikis-resistant rabbit aortic endothelial cells submitted to SDC4 gene silencing (miR-Syn4-Adh-1-EC). For this, we evaluated the expression of adhesive proteins, ECM receptors, nonreceptor protein-tyrosine kinases, and ECM-degrading enzymes and their inhibitors. Altered cell behavior was monitored by adhesion, migration, and tube formation assays. We found that SDC4 silencing led to a decrease in migration and angiogenic capacity of anoikis-resistant endothelial cells; this was accompanied by an increase in adhesion to fibronectin. Furthermore, after SDC4 silencing, we observed an increase in the expression of fibronectin, collagen IV, and vitronectin, and a decrease in the expression of integrin α5ß1 and αvß3, besides that, silenced cells show an increase in Src and FAK expression. Quantitative polymerase chain reaction and Western blot analysis demonstrated that SDC4 silencing leads to altered gene and protein expression of MMP2, MMP9, and HSPE. Compared with parental cells, SDC4 silenced cells showed a decrease in nitric oxide production and eNOS expression. In conclusion, these data demonstrate that SDC4 plays an important role in ECM remodeling. In addition, our findings represent an important step toward understanding the mechanism by which SDC4 can reverse the transformed phenotype of anoikis-resistant endothelial cells.


Asunto(s)
Anoicis , Células Endoteliales , Matriz Extracelular , Silenciador del Gen , Sindecano-4 , Sindecano-4/metabolismo , Sindecano-4/genética , Animales , Matriz Extracelular/metabolismo , Células Endoteliales/metabolismo , Conejos , Adhesión Celular , Movimiento Celular , Fibronectinas/metabolismo , Células Cultivadas
2.
Exp Eye Res ; 235: 109612, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37580001

RESUMEN

The harderian gland (HG) is a gland located at the base of the nictating membrane and fills the inferomedial aspect of the orbit in rodents. It is under the influence of the hypothalamic-pituitary-gonadal axis and, because of its hormone receptors, it is a target tissue for prolactin (PRL) and sex steroid hormones (estrogen and progesterone). In humans and murine, the anterior surface of the eyes is protected by a tear film synthesized by glands associated with the eye. In order to understand the endocrine changes caused by hyperprolactinemia in the glands responsible for the formation of the tear film, we used an animal model with metoclopramide-induced hyperprolactinemia (HPRL). Given the evidences that HPRL can lead to a process of cell death and tissue fibrosis, the protein expression of small leucine-rich proteoglycans (SLRPs) was analyzed through immunohistochemistry in the HG of the non- and the pregnant female mice with hyperprolactinemia. The SRLPs are related to collagen fibrillogenesis and they participate in pro-apoptotic signals. Our data revealed that high prolactin levels and changes in steroid hormones (estrogen and progesterone) can lead to an alteration in the amount of collagen, and in the structure of type I and III collagen fibers through changes in the amounts of lumican and decorin, which are responsible for collagen fibrillogenesis. This fact can lead to the impaired functioning of the HG by excessive apoptosis in the HG of the non- and the pregnant female mice with HPRL and especially in the HG of pregnancy-associated hyperprolactinemia.


Asunto(s)
Glándula de Harder , Hiperprolactinemia , Embarazo , Humanos , Ratones , Femenino , Animales , Proteoglicanos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hiperprolactinemia/inducido químicamente , Hiperprolactinemia/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Decorina/metabolismo , Prolactina/efectos adversos , Prolactina/análisis , Prolactina/metabolismo , Progesterona , Glándula de Harder/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Estrógenos/efectos adversos , Estrógenos/análisis , Estrógenos/metabolismo
3.
Adv Exp Med Biol ; 1429: 127-155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37486520

RESUMEN

Genome editing has multiple applications in the biomedical field. They can be used to modify genomes at specific locations, being able to either delete, reduce, or even enhance gene transcription and protein expression. Here, we summarize applications of genome editing used in the field of lysosomal disorders. We focus on the development of cell lines for study of disease pathogenesis, drug discovery, and pathogenicity of specific variants. Furthermore, we highlight the main studies that use gene editing as a gene therapy platform for these disorders, both in preclinical and clinical studies. We conclude that gene editing has been able to change quickly the scenario of these disorders, allowing the development of new therapies and improving the knowledge on disease pathogenesis. Should they confirm their hype, the first gene editing-based products for lysosomal disorders could be available in the next years.


Asunto(s)
Edición Génica , Enfermedades por Almacenamiento Lisosomal , Humanos , Terapia Genética , Genoma , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/terapia , Sistemas CRISPR-Cas/genética
4.
Curr Drug Metab ; 23(14): 1124-1129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36624645

RESUMEN

INTRODUCTION AND AIM: Vitamin D is the name given to a group of lipid-soluble steroidal substances of physiological importance in the body, especially in bone metabolism. The active form of vitamin D is believed to have immunomodulatory effects on immune system cells, especially T lymphocytes, as well as on the production and action of several cytokines and on the expression of potent antimicrobial peptides in epithelial cells that line the respiratory tract, playing an important role in protecting the lung from infections. The aim of this study was to assess vitamin D levels in patients with COVID-19 in healthcare service and to verify that these levels are adequate to protect the progression of this infection. METHODS: The aim of this observational study was to evaluate the serum concentration of vitamin D in 300 patients suspected of being infected with COVID-19, treated at Basic Health Units (BHUs) and at the Hospital Complex in the municipality of São Bernardo do Campo. RESULTS: 294 patients were included, 195 (66%) of which tested positive for COVID-19 and 99 (34%) negative for COVID-19. Among the patients in the positive group, 163 patients were in the mild group (84%); 22 patients in the moderate group (11%); 8 patients in the severe group (4%), and 2 patients in the deceased group (1%). CONCLUSION: For the patients in this study, no association was observed for the protective factor of vitamin D against COVID-19 infection, and its role in controlling the clinical staging of the disease was not verified.


Asunto(s)
COVID-19 , Vitamina D , Humanos , Vitaminas , Citocinas , Células Epiteliales
5.
Gene ; 853: 147084, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36464169

RESUMEN

Familial hypercholesterolemia (FH) is caused by deleterious mutations in the LDLR that increase markedly low-density lipoprotein (LDL) cholesterol and cause premature atherosclerotic cardiovascular disease. Functional effects of pathogenic LDLR variants identified in Brazilian FH patients were assessed using in vitro and in silico studies. Variants in LDLR and other FH-related genes were detected by exon-target gene sequencing. T-lymphocytes were isolated from 26 FH patients, and 3 healthy controls and LDLR expression and activity were assessed by flow cytometry and confocal microscopy. The impact of LDLR missense variants on protein structure was assessed by molecular modeling analysis. Ten pathogenic or likely pathogenic LDLR variants (six missense, two stop-gain, one frameshift, and one in splicing region) and six non-pathogenic variants were identified. Carriers of pathogenic and non-pathogenic variants had lower LDL binding and uptake in activated T-lymphocytes compared to controls (p < 0.05), but these variants did not influence LDLR expression on cell surface. Reduced LDL binding and uptake was also observed in carriers of LDLR null and defective variants. Modeling analysis showed that p.(Ala431Thr), p.(Gly549Asp) and p.(Gly592Glu) disturb intramolecular interactions of LDLR, and p.(Gly373Asp) and p.(Ile488Thr) reduce the stability of the LDLR protein. Docking and molecular interactions analyses showed that p.(Cys184Tyr) and p.(Gly373Asp) alter interaction of LDLR with Apolipoprotein B (ApoB). In conclusion, LDLR null and defective variants reduce LDL binding capacity and uptake in activated T-lymphocytes of FH patients and LDLR missense variants affect LDLR conformational stability and dissociation of the LDLR-ApoB complex, having a potential role in FH pathogenesis.


Asunto(s)
Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol/genética , Fenotipo , Hiperlipoproteinemia Tipo II/genética , Mutación Missense , Apolipoproteínas B/genética , Receptores de LDL/genética , Linfocitos T , Mutación
6.
Science ; 378(6623): 931, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454828

RESUMEN

Last month in Egypt at the United Nations Climate Change Conference, Brazil's president-elect Luiz Inácio Lula da Silva reaffirmed his pledge to make Brazil a global leader in addressing climate change and deforestation. However, when Lula takes the reins on 1 January, he will step into a situation that is quite different from when last he was president (2003-2010). At that time, he prioritized science and education in all government actions and guided Brazil to a prosperous social state and sustainable economy. This time, he will face a much different local and global scenario. The world is still going through an unprecedented health crisis, and like other countries, Brazil needs to establish new ways of tackling the consequential social, educational, environmental, and economic problems. This will be especially challenging given that since 2016, the country has taken the opposite direction of most governments, cutting investments in education at all levels and in science, technology, and innovation (ST&I). The question is how Lula can immediately address the serious poverty and hunger crisis in Brazil while also restoring the environment and a competitive and equitable economy to the country.

7.
Gene ; 853(147084)Dec. 2022.
Artículo en Inglés | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1410965

RESUMEN

ABSTRACT: Familial hypercholesterolemia (FH) is caused by deleterious mutations in the LDLR that increase markedly low-density lipoprotein (LDL) cholesterol and cause premature atherosclerotic cardiovascular disease. Functional effects of pathogenic LDLR variants identified in Brazilian FH patients were assessed using in vitro and in silico studies. Variants in LDLR and other FH-related genes were detected by exon-target gene sequencing. T-lymphocytes were isolated from 26 FH patients, and 3 healthy controls and LDLR expression and activity were assessed by flow cytometry and confocal microscopy. The impact of LDLR missense variants on protein structure was assessed by molecular modeling analysis. Ten pathogenic or likely pathogenic LDLR variants (six missense, two stop-gain, one frameshift, and one in splicing region) and six non-pathogenic variants were identified. Carriers of pathogenic and non-pathogenic variants had lower LDL binding and uptake in activated T-lymphocytes compared to controls (p < 0.05), but these variants did not influence LDLR expression on cell surface. Reduced LDL binding and uptake was also observed in carriers of LDLR null and defective variants. Modeling analysis showed that p.(Ala431Thr), p.(Gly549Asp) and p.(Gly592Glu) disturb intramolecular interactions of LDLR, and p.(Gly373Asp) and p.(Ile488Thr) reduce the stability of the LDLR protein. Docking and molecular interactions analyses showed that p.(Cys184Tyr) and p.(Gly373Asp) alter interaction of LDLR with Apolipoprotein B (ApoB). In conclusion, LDLR null and defective variants reduce LDL binding capacity and uptake in activated T-lymphocytes of FH patients and LDLR missense variants affect LDLR conformational stability and dissociation of the LDLR-ApoB complex, having a potential role in FH pathogenesis.


Asunto(s)
Linfocitos T , Mutación Missense , Hiperlipoproteinemia Tipo II , Lipoproteínas LDL
8.
ACS Omega ; 7(28): 24461-24467, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874203

RESUMEN

Heparan sulfate (HS), a sulfated linear carbohydrate that decorates the cell surface and extracellular matrix, is ubiquitously distributed throughout the animal kingdom and represents a key regulator of biological processes and a largely untapped reservoir of potential therapeutic targets. The temporal and spatial variations in the HS structure underpin the concept of "heparanome" and a complex network of HS binding proteins. However, despite its widespread biological roles, the determination of direct structure-to-function correlations is impaired by HS chemical heterogeneity. Attempts to correlate substitution patterns (mostly at the level of sulfation) with a given biological activity have been made. Nonetheless, these do not generally consider higher-level conformational effects at the carbohydrate level. Here, the use of NMR chemical shift analysis, NOEs, and spin-spin coupling constants sheds new light on how different sulfation patterns affect the polysaccharide backbone geometry. Furthermore, the substitution of native O-glycosidic linkages to hydrolytically more stable S-glycosidic forms leads to observable conformational changes in model saccharides, suggesting that alternative chemical spaces can be accessed and explored using such mimetics. Employing a series of systematically modified heparin oligosaccharides (as a proxy for HS) and chemically synthesized O- and S-glycoside analogues, the chemical space occupied by such compounds is explored and described.

9.
Nanoscale ; 14(19): 7350-7363, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35535683

RESUMEN

Engineered nanoparticles approaching the cell body will first encounter and interact with cell-surface glycosaminoglycans (GAGs) before reaching the plasma membrane and becoming internalized. However, how surface GAGs may regulate the cellular entry of nanoparticles remains poorly understood. Herein, it is shown that the surface GAGs of Chinese hamster ovary cells perform as a charge-based barrier against the cellular internalization of anionic polystyrene nanoparticles (PS NPs). In contrast, cationic PS NPs interact favorably with the surface GAGs and thereby are efficiently internalized. Anionic PS NPs eventually reaching the plasma membrane bind to scavenger receptors and are endocytosed by clathrin-mediated and lipid raft/cholesterol-dependent mechanisms, whereas cationic PS NPs are primarily internalized via clathrin-mediated endocytosis and macropinocytosis. Upon the enzymatic shedding of surface GAGs, the uptake of anionic PS NPs increases while that of cationic PS NPs is dramatically reduced. Interestingly, the diminished uptake of cationic PS NPs is observed only when heparan sulfate, but not chondroitin sulfate, is cleaved from the cell surface. Heparan sulfate therefore serves as anchors/first receptors to facilitate the cellular entry of cationic PS NPs. These findings contribute to advance the basic science of nanoparticle endocytosis while also having important implications for the use of engineered nanocarriers as intracellular drug-delivery systems.


Asunto(s)
Nanopartículas , Poliestirenos , Animales , Células CHO , Cationes , Membrana Celular/metabolismo , Clatrina/metabolismo , Cricetinae , Cricetulus , Endocitosis , Glicosaminoglicanos , Heparitina Sulfato/metabolismo , Nanopartículas/metabolismo
10.
Gynecol Endocrinol ; 38(2): 181-185, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34463181

RESUMEN

AIMS: To evaluate the concentration of hyaluronan acid and proliferation/cellular death in mammary gland of ovariectomized female rat after estroprogestative therapy. MATERIALS AND METHODS: Forty ovariectomized female rats were divided into four groups with 10 animals/each: OG (vehicle); EG: (Estradiol, 7 days of treatment), PG (Progesterone acetate, 23 days of treatment), and EPG: (Estradiol, 7 days of treatment, and next Progesterone acetate, 23 days of treatment). Twenty-four hours after the last treatment, all animals were euthanized, the mammary gland removed, then, a fragment was immersed in acetone to quantifying of the hyaluronan acid biochemical method (ELISA-Like fluorometric assay), and a fragment fixed for 24 h in 10% formaldehyde in phosphate-buffered saline (PBS) processed for immunohistochemistry method for detection of the cell marker proliferation (Ki67) and cellular marker death by DNA fragmentation the TUNEL method. RESULTS: The estradiol-treatment alone (EG) or associated with progesterone (EPG) affected the concentration of hyaluronan acid, increased cell proliferation, and decreased cell death compared to OG and PG (p < .05) in the mammary tissue. CONCLUSIONS: Our results suggest that the excessive reduction of HA in mammary tissue, as occurred with progesterone treatment, can lead to a breakdown of the extracellular matrix. These changes may be indicative of mammary pathology such as the development of tumor.


Asunto(s)
Estradiol , Ácido Hialurónico , Glándulas Mamarias Animales , Progesterona , Animales , Muerte Celular , Proliferación Celular , Estradiol/farmacología , Femenino , Ácido Hialurónico/análisis , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Progesterona/farmacología , Ratas
12.
3 Biotech ; 12(1): 19, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34926123

RESUMEN

Erythrina velutina is a species of arboreal leguminous that occurs spontaneously in the northeastern states of Brazil. Leguminous seeds represent an abundant source of peptidase inhibitors, which play an important role in controlling peptidases involved in essential biological processes. The aim of this study was to purify and characterize a novel Kunitz-type peptidase inhibitor from Erythrina velutina seeds and evaluate its anti-proliferative effects against cancer cell lines. The Kunitz-type chymotrypsin inhibitor was purified from Erythrina velutina seeds (EvCI) by ammonium sulphate fractionation, trypsin- and chymotrypsin-sepharose affinity chromatographies and Resource Q anion-exchange column. The purified EvCI has a molecular mass of 18 kDa with homology to a Kunitz-type inhibitor. Inhibition assays revealed that EvCI is a competitive inhibitor of chymotrypsin (with K i of 4 × 10-8 M), with weak inhibitory activity against human elastase and without inhibition against trypsin, elastase, bromelain or papain. In addition, the inhibitory activity of EvCI was stable over a wide range of pH and temperature. Disulfide bridges are involved in stabilization of the reactive site in EvCI, since the reduction of disulfide bridges with DTT 100 mM abolished ~ 50% of its inhibitory activity. The inhibitor exhibited selective anti-proliferative properties against HeLa cells. The incubation of EvCI with HeLa cells triggered arrest in the cell cycle, suggesting that apoptosis is the mechanism of death induced by the inhibitor. EvCI constitutes an interesting anti-carcinogenic candidate for conventional cervical cancer treatments employed currently. The EvCI cytostatic effect on Hela cells indicates a promised compound to be used as anti-carcinogenic complement for conventional cervical treatments employed currently.

13.
Medicine (Baltimore) ; 100(51): e28288, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34941114

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that spreads rapidly, reaching pandemic status, causing the collapse of numerous health systems, and a strong economic and social impact. The treatment so far has not been well established and there are several clinical trials testing known drugs that have antiviral activity, due to the urgency that the global situation imposes. Drugs with specific mechanisms of action can take years to be discovered, while vaccines may also take a long time to be widely distributed while new virus variants emerge. Thus, drug repositioning has been shown to be a good strategy for defining new therapeutic approaches. Studies of the effect of enriched heparin in the replication of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) in vitro assays justify the advance for clinical tests. METHODS AND ANALYSIS: A phase I/II triple-blind parallel clinical trial will be conducted. Fifty participants with radiological diagnosis of grade IIA pneumonia will be selected, which will be allocated in 2 arms. Participants allocated in Group 1 (placebo) will receive nebulized 0.9% saline. Participants allocated in Group 2 (intervention) will receive nebulized enriched heparin (2.5 mg/mL 0.9% saline). Both groups will receive the respective solutions on a 4/4 hour basis, for 7 days. The main outcomes of interest will be safety (absence of serious adverse events) and efficacy (measured by the viral load).Protocols will be filled on a daily basis, ranging from day 0 (diagnosis) until day 8.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Heparina/uso terapéutico , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Solución Salina , Resultado del Tratamiento
14.
Biochim Biophys Acta Gen Subj ; 1865(12): 130016, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34560176

RESUMEN

BACKGROUND: Garcinia brasiliensis is a species native to the Amazon forest. The white mucilaginous pulp is used in folk medicine as a wound healing agent and for peptic ulcer, urinary, and tumor disease treatments. The activity of the proprotein convertases (PCs) Subtilisin/Kex is associated with the development of viral, bacterial and fungal infections, osteoporosis, hyperglycemia, atherosclerosis, cardiovascular, neurodegenerative and neoplastic diseases. METHODS: Morelloflavone (BF1) and semisynthetic biflavonoid (BF2, 3 and 4) from Garcinia brasiliensis were tested as inhibitor of PCs Kex2, PC1/3 and Furin, and determined IC50, Ki, human proinflammatory cytokines secretion in Caco-2 cells, mechanism of inhibition, and performed molecular docking studies. RESULTS: Biflavonoids were more effective in the inhibition of neuroendocrine PC1/3 than mammalian Furin and fungal Kex2. BF1 presented a mixed inhibition mechanism for Kex2 and PC1, and competitive inhibition for Furin. BF4 has no good interaction with Kex2 and Furin since carboxypropyl groups results in steric hindrance to ligand-protein interactions. Carboxypropyl groups of BF4 promote steric hindrance with Kex2 and Furin, but effective in the affinity of PC1/3. BF4 was more efficient at inhibiting PCl/3 (IC50 = 1.13 µM and Ki = 0,59 µM, simple linear competitive mechanism of inhibition) than Kex2, Furin. Also, our results strongly suggested that BF4 also inhibits the endogenous cellular PC1/3 activity in Caco-2 cells, since PC1/3 inhibition by BF4 causes a large increase in IL-8 and IL-1ß secretion in Caco-2 cells. CONCLUSIONS: BF4 is a potent and selective inhibitor of PC1/3. GENERAL SIGNIFICANCE: BF4 is the best candidate for further clinical studies on inhibition of PC1/3.


Asunto(s)
Biflavonoides , Células CACO-2 , Furina , Humanos , Simulación del Acoplamiento Molecular
15.
Front Oncol ; 11: 697626, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422650

RESUMEN

Angiogenesis is the formation of new vessels from pre-existing vasculature. The heparan sulfate chains from endothelial cell proteoglycans interact with the major angiogenic factors, regulating blood vessels´ formation. Since the FDA´s first approval, anti-angiogenic therapy has shown tumor progression inhibition and increased patient survival. Previous work in our group has selected an HS-binding peptide using a phage display system. Therefore, we investigated the effect of the selected peptide in angiogenesis and tumor progression. The HS-binding peptide showed a higher affinity for heparin N-sulfated. The HS-binding peptide was able to inhibit the proliferation of human endothelial umbilical cord cells (HUVEC) by modulation of FGF-2. It was verified a significant decrease in the tube formation of human endothelial cells and capillary formation of mice aorta treated with HS-binding peptide. HS-binding peptide also inhibited the formation of sub-intestinal blood vessels in zebrafish embryos. Additionally, in zebrafish embryos, the tumor size decreased after treatment with HS-binding peptide.

16.
Molecules ; 26(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202190

RESUMEN

Background: The disease caused by hepatitis C virus (HCV) is asymptomatic, silent, and progressive liver disease. In HCV-infected patients the increase in serum HA is associated with the development of hepatic fibrosis and disease progression. Methods: HCV-RNA detection was performed in all serological samples of blood donors that tested positive using HCV Ultra ELISA. Determination of hyaluronan (HA) was performed in positive HCV samples using ELISA-like fluorometric method. The HA content was compared to HCV viral load, genotype of the virus, liver fibrosis as well as ALT and GGT liver biomarkers. Results: Persistently normal ALT (<40 U/L) and GGT (<50 U/L) serum levels were detected in 75% and 69% of the HCV-Infected blood donors, respectively. Based on ROC analysis, the HA value < 34.2 ng/mL is an optimal cut-off point to exclude HCV viremia (specificity = 91%, NPV = 99%). Applying HA value ≥34.2 ng/mL significant liver fibrosis (≥F2) can be estimated in 46% of the HCV-infected blood donors. HA serum level (≥34.2 ng/mL) associated with a high ALT level (>40 U/mL) can correctly identify HCV infection and probable liver fibrosis (sensitivity = 96% and specificity = 90%) in asymptomatic blood donors. Conclusions: A high level of HA (≥34.2 ng/mL) in association with ALT (≥40 U/L) in serum can provide a good clinical opportunity to detect HCV-infected asymptomatic persons that potentially require a liver biopsy confirmation and antiviral treatment to prevent the development of advanced liver fibrosis or cirrhosis.


Asunto(s)
Donantes de Sangre , Hepacivirus/metabolismo , Hepatitis C/sangre , Hepatitis C/diagnóstico , Ácido Hialurónico/sangre , Cirrosis Hepática/sangre , Cirrosis Hepática/diagnóstico , Adulto , Ensayo de Inmunoadsorción Enzimática , Femenino , Genotipo , Hepacivirus/genética , Hepatitis C/genética , Humanos , Cirrosis Hepática/genética , Masculino , Persona de Mediana Edad
17.
Mol Biol Rep ; 48(4): 3117-3125, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33891270

RESUMEN

Heparanase is an endo-beta-glucuronidase, the only enzyme in mammals capable of cleaving heparan sulfate/heparin chains from proteoglycans. The oligosaccharides generated by heparanase present extensive biological functions since such oligosaccharides interact with adhesion molecules, growth factors, angiogenic factors and cytokines, modulating cell proliferation, migration, inflammation, and carcinogenesis. However, the regulation of heparanase activity is not fully understood. It is known that heparanase is synthesized as an inactive 65 kDa isoform and that post-translation processing forms an active 50 kDa enzyme. In the present study, we are interested in investigating whether heparanase is regulated by its own substrate as observed with many other enzymes. Wild-type Chinese hamster (Cricetulus griséus) ovary cells (CHO-K1) were treated with different doses of heparin. Heparanase expression was analyzed by Real-time PCR and flow cytometry. Also, heparanase activity was measured. The heparanase activity assay was performed using a coated plate with biotinylated heparan sulfate. In the present assay, a competitive heparin inhibition scenario was set aside. Exogenous heparin trigged a cell signaling pathway that increased heparanase mRNA and protein levels. The Wnt/beta-catenin pathway, judged by TCF-driven luciferase activity, seems to be involved to enhance heparanase profile during treatment with exogenous heparin. Lithium chloride treatment, an activator of the Wnt/beta-catenin pathway, confirmed such mechanism of transduction in vivo using zebrafish embryos and in vitro using CHO-K1 cells. Taken together the results suggest that heparin modulates heparanase expression by Wnt/beta-catenin.


Asunto(s)
Glucuronidasa/metabolismo , Heparina/metabolismo , Vía de Señalización Wnt , Animales , Células CHO , Cricetulus , Transducción de Señal , Pez Cebra
18.
Carbohydr Polym ; 255: 117477, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436240

RESUMEN

The cell surface and extracellular matrix polysaccharide, heparan sulfate (HS) conveys chemical information to control crucial biological processes. HS chains are synthesized in a non-template driven process mainly in the Golgi apparatus, involving a large number of enzymes capable of subtly modifying its substitution pattern, hence, its interactions and biological effects. Changes in the localization of HS-modifying enzymes throughout the Golgi were found to correlate with changes in the structure of HS, rather than protein expression levels. Following BFA treatment, the HS-modifying enzymes localized preferentially in COPII vesicles and at the trans-Golgi. Shortly after heparin treatment, the HS-modifying enzyme moved from cis to trans-Golgi, which coincided with increased HS sulfation. Finally, it was shown that COPI subunits and Sec24 gene expression changed. Collectively, these findings demonstrate that knowledge of the ER-Golgi dynamics of HS-modifying enzymes via vesicular trafficking is a critical prerequisite for the complete delineation of HS biosynthesis.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Heparitina Sulfato/biosíntesis , Transporte Biológico/efectos de los fármacos , Brefeldino A/farmacología , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Retículo Endoplásmico/química , Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica , Aparato de Golgi/química , Aparato de Golgi/efectos de los fármacos , Heparina/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , Transfección , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
19.
Glycoconj J ; 38(1): 35-43, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33411076

RESUMEN

Cells undergoing hypoxia experience intense cytoplasmic calcium (Ca2+) overload. High concentrations of intracellular calcium ([Ca2+]i) can trigger cell death in the neural tissue, a hallmark of stroke. Neural Ca2+ homeostasis involves regulation by the Na+/Ca2+ exchanger (NCX). Previous data published by our group showed that a product of the enzymatic depolymerization of heparin by heparinase, the unsaturated trisulfated disaccharide (TD; ΔU, 2S-GlcNS, 6S), can accelerate Na+/Ca2+ exchange via NCX, in hepatocytes and aorta vascular smooth muscle cells. Thus, the objective of this work was to verify whether TD could act as a neuroprotective agent able to prevent neuronal cell death by reducing [Ca2+]i. Pretreatment of N2a cells with TD reduced [Ca2+]i rise induced by thapsigargin and increased cell viability under [Ca2+]I overload conditions and in hypoxia. Using a murine model of stroke, we observed that pretreatment with TD decreased cerebral infarct volume and cell death. However, when mice received KB-R7943, an NCX blocker, the neuroprotective effect of TD was abolished, strongly suggesting that this neuroprotection requires a functional NCX to happen. Thus, we propose TD-NCX as a new therapeutic axis for the prevention of neuronal death induced by [Ca2+]i overload.


Asunto(s)
Disacáridos/farmacología , Heparina/análogos & derivados , Accidente Cerebrovascular Isquémico/prevención & control , Fármacos Neuroprotectores/farmacología , Animales , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Disacáridos/química , Heparina/química , Heparina/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/química , Tapsigargina/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología
20.
Onco Targets Ther ; 14: 455-467, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33488100

RESUMEN

INTRODUCTION: Multiple myeloma (MM) remains an incurable disease, and patient survival requires a better understanding of this malignancy's molecular aspects. Heparanase (HPSE) is highly expressed in aggressive MM cells and related to tumor growth, metastasis, and bortezomib (BTZ) resistance. Thus, targeting HPSE seems to be a promising approach for MM treatment, and because microRNAs (miRNAs) have emerged as potential regulators of HPSE expression, the use of extracellular vesicles (EVs) can allow the efficient delivery of therapeutic miRNAs. METHODS: We used prediction algorithms to identify potential miRNAs that regulate negatively HPSE expression. RT-qPCR was performed to assess miRNAs and HPSE expression in MM lines (U266 and RPMI-8226). Synthetic miRNA mimics were electroporated in MM cells to understand the miRNA contribution in HPSE expression, glycosaminoglycans (GAGs) profile, cell proliferation, and cell death induced by BTZ. EVs derived from HEK293T cells were engineered with miRNAs to evaluate their therapeutic potential combined with BTZ. RESULTS: It revealed a direct association between BTZ sensitivity, HPSE, and miR-1252-5p expressions. Moreover, overexpression of miR-1252-5p significantly reduced HPSE expression and HPSE enzymatic activity in MM cells. The higher level of miR-1252-5p was correlated with a reduction of cell viability and higher sensitivity to BTZ. Further, EVs carrying miR-1252-5p increased MM cells' sensitivity to BTZ treatment. CONCLUSION: These results showed that miR-1252-5p could negatively regulate HPSE in MM, indicating the use of EVs carrying miR-1252-5p as a potential novel BTZ sensitization approach in MM cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...