Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Earth Space Chem ; 7(1): 252-259, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36704180

RESUMEN

Aerosols are abundant on the Earth and likely played a role in prebiotic chemistry. Aerosol particles coagulate, divide, and sample a wide variety of conditions conducive to synthesis. While much work has centered on the generation of aerosols and their chemistry, little effort has been expended on their fate after settling. Here, using a laboratory model, we show that aqueous aerosols transform into cell-sized protocellular structures upon entry into aqueous solution containing lipid. Such processes provide for a heretofore unexplored pathway for the assembly of the building blocks of life from disparate geochemical regions within cell-like vesicles with a lipid bilayer in a manner that does not lead to dilution. The efficiency of aerosol to vesicle transformation is high with prebiotically plausible lipids, such as decanoic acid and decanol, that were previously shown to be capable of forming growing and dividing vesicles. The high transformation efficiency with 10-carbon lipids in landing solutions is consistent with the surface properties and dynamics of short-chain lipids. Similar processes may be operative today as fatty acids are common constituents of both contemporary aerosols and the sea. Our work highlights a new pathway that may have facilitated the emergence of the Earth's first cells.

2.
Philos Trans A Math Phys Eng Sci ; 380(2227): 20200423, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35599565

RESUMEN

It is common to compare life with machines. Both consume fuel and release waste to run. In biology, the engine that drives the living system is referred to as metabolism. However, attempts at deciphering the origins of metabolism do not focus on this energetic relationship that sustains life but rather concentrate on nonenzymatic reactions that produce all the intermediates of an extant metabolic pathway. Such an approach is akin to studying the molecules produced from the burning of coal instead of deciphering how the released energy drives the movement of pistons and ultimately the train when investigating the mechanisms behind locomotion. Theories that do explicitly invoke geological chemical gradients to drive metabolism most frequently feature hydrothermal vent conditions, but hydrothermal vents are not the only regions of the early Earth that could have provided the fuel necessary to sustain the Earth's first (proto)cells. Here, we give examples of prior reports on protometabolism and highlight how more recent investigations of out-of-equilibrium systems may point to alternative scenarios more consistent with the majority of prebiotic chemistry data accumulated thus far. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.


Asunto(s)
Respiraderos Hidrotermales , Planeta Tierra , Respiraderos Hidrotermales/química
3.
J Phys Chem B ; 125(43): 11916-11926, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34694819

RESUMEN

Solid-state 1H, 13C, and 15N nuclear magnetic resonance (NMR) spectroscopy has been an essential analytical method in studying complex molecules and biomolecules for decades. While oxygen-17 (17O) NMR is an ideal and robust candidate to study hydrogen bonding within secondary and tertiary protein structures for example, it continues to elude many. We discuss an improved multiple-turnover labeling procedure to develop a fast and cost-effective method to 17O label fluoroenylmethyloxycarbonyl (Fmoc)-protected amino acid building blocks. This approach allows for inexpensive ($0.25 USD/mg) insertion of 17O labels, an important barrier to overcome for future biomolecular studies. The 17O NMR results of these building blocks and a site-specific strategy for labeled N-acetyl-MLF-OH and N-formyl-MLF-OH tripeptides are presented. We showcase growth in NMR development for maximizing sensitivity gains using emerging sensitivity enhancement techniques including population transfer, high-field dynamic nuclear polarization, and cross-polarization magic-angle spinning cryoprobes.


Asunto(s)
Aminoácidos , Proteínas , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular
4.
JACS Au ; 1(4): 371-374, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-34467301

RESUMEN

Deciphering the origins of the chemistry that supports life has frequently centered on determining prebiotically plausible paths that produce the molecules found in biology. What has been less investigated is how the energy released from the breakdown of foodstuff is coupled to the persistence of the protocell. To gain better insight into how such coupled chemistry could have emerged prebiotically, we probed the reactivity of the ribodinucleotide NAD+ with small organic molecules that were previously identified as potential constituents of protometabolism. We find that NAD+ is readily reduced nonenzymatically by α-keto acids, such as pyruvate and oxaloacetate, during oxidative decarboxylation. In the presence of FAD and a terminal electron acceptor, the consumption of α-keto acids by NAD+ initiates a plausible prebiotic electron transport chain. The observed reactivity suggests that components of the RNA world were capable of initiating the chemistry needed to capture the energy released from catabolism to drive anabolism.

5.
Anal Biochem ; 629: 114269, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34089700

RESUMEN

The near universal availability of UV-Visible spectrophotometers makes this instrument a highly exploited tool for the inexpensive, rapid examination of iron-sulfur clusters. Yet, the analysis of iron-sulfur cluster reconstitution experiments by UV-Vis spectroscopy is notoriously difficult due to the presence of broad, ill-defined peaks. Other types of spectroscopies, such as electron paramagnetic resonance spectroscopy and Mössbauer spectroscopy, are superior in characterizing the type of cluster present and their associated electronic transitions but require expensive, less readily available equipment. Here, we describe a tool that utilizes the accessible and convenient platform of Microsoft Excel to allow for the semi-quantitative analysis of iron-sulfur clusters by UV-Vis spectroscopy. This tool, which we call Fit-FeS, could potentially be used to additionally decompose spectra of solutions containing chromophores other than iron-sulfur clusters.


Asunto(s)
Hierro/química , Azufre/química , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Ferrosos/química , Conformación Molecular , Biblioteca de Péptidos , Péptidos/química , Espectrofotometría Ultravioleta
6.
J Phys Chem B ; 121(26): 6295-6312, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28574718

RESUMEN

In the context of the SIBFA polarizable molecular mechanics/dynamics (PMM/PMD) procedure, we report the calibration and a series of validation tests for the 1,2,4-triazole-3-thione (TZT) heterocycle. TZT acts as the chelating group of inhibitors of dizinc metallo-ß-lactamases (MBL), an emerging class of Zn-dependent bacterial enzymes, which by cleaving the ß-lactam bond of most ß-lactam antibiotics are responsible for the acquired resistance of bacteria to these drugs. Such a study is indispensable prior to performing PMD simulations of complexes of TZT-based inhibitors with MBL's, on account of the anchoring role of TZT in the dizinc MBL recognition site. Calibration was done by comparisons to energy decomposition analyses (EDA) of high-level ab initio QC computations of the TZT complexes with two probes: Zn(II), representative of "soft" dications, and water, representative of dipolar molecules. We performed distance variations of the approach of each probe to each of the two TZT atoms involved in Zn ligation, the S atom and the N atom ortho to it, so that each SIBFA contribution matches its QC counterpart. Validations were obtained by performing in- and out-of-plane angular variations of Zn(II) binding in monoligated Zn(II)-TZT complexes. The most demanding part of this study was then addressed. How well does ΔE(SIBFA) and its individual contributions compare to their QC counterparts in the dizinc binding site of one MBL, L1, whose structure is known from high-resolution X-ray crystallography? Six distinct complexes were considered, namely each separate monozinc site, and the dizinc site, whether ligated or unligated by TZT. Despite the large magnitude of the interaction energies, in all six complexes ΔE(SIBFA) can match ΔE(QC) with relative errors <2% and the proper balance of individual energy contributions. The computations were extended to the dizinc site of another MBL, VIM-2, and its complexes with two other TZT analogues. ΔE(SIBFA) faithfully reproduced ΔE(QC) in terms of magnitude, ranking of the three ligands, and trends of the separate energy contributions. A preliminary extension to correlated calculations is finally presented. All these validations should enable a secure design of a diversity of TZT-containing MBL inhibitors: a structurally and energetically correct anchoring of TZT should enable all other inhibitor groups to in turn optimize their interactions with the other target MBL residues.


Asunto(s)
Teoría Cuántica , Triazoles/química , Zinc/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Calibración , Cristalografía por Rayos X , Reproducibilidad de los Resultados , Triazoles/farmacología , Zinc/metabolismo , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA