Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(15): 150604, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682960

RESUMEN

We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection-key requirements for any scalable blind server, which previous realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This experiment demonstrates a path to fully verified quantum computing in the cloud.

2.
Phys Rev Lett ; 131(12): 120601, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37802949

RESUMEN

We use electronic microwave control methods to implement addressed single-qubit gates with high speed and fidelity, for ^{43}Ca^{+} hyperfine "atomic clock" qubits in a cryogenic (100 K) surface trap. For a single qubit, we benchmark an error of 1.5×10^{-6} per Clifford gate (implemented using 600 ns π/2 pulses). For 2 qubits in the same trap zone (ion separation 5 µm), we use a spatial microwave field gradient, combined with an efficient four-pulse scheme, to implement independent addressed gates. Parallel randomized benchmarking on both qubits yields an average error 3.4×10^{-5} per addressed π/2 gate. The scheme scales theoretically to larger numbers of qubits in a single register.

3.
Phys Rev Lett ; 130(9): 090803, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930909

RESUMEN

We integrate a long-lived memory qubit into a mixed-species trapped-ion quantum network node. Ion-photon entanglement first generated with a network qubit in ^{88}Sr^{+} is transferred to ^{43}Ca^{+} with 0.977(7) fidelity, and mapped to a robust memory qubit. We then entangle the network qubit with a second photon, without affecting the memory qubit. We perform quantum state tomography to show that the fidelity of ion-photon entanglement decays ∼70 times slower on the memory qubit. Dynamical decoupling further extends the storage duration; we measure an ion-photon entanglement fidelity of 0.81(4) after 10 s.

4.
Nature ; 609(7928): 689-694, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071166

RESUMEN

Optical atomic clocks are our most precise tools to measure time and frequency1-3. Precision frequency comparisons between clocks in separate locations enable one to probe the space-time variation of fundamental constants4,5 and the properties of dark matter6,7, to perform geodesy8-10 and to evaluate systematic clock shifts. Measurements on independent systems are limited by the standard quantum limit; measurements on entangled systems can surpass the standard quantum limit to reach the ultimate precision allowed by quantum theory-the Heisenberg limit. Although local entangling operations have demonstrated this enhancement at microscopic distances11-16, comparisons between remote atomic clocks require the rapid generation of high-fidelity entanglement between systems that have no intrinsic interactions. Here we report the use of a photonic link17,18 to entangle two 88Sr+ ions separated by a macroscopic distance19 (approximately 2 m) to demonstrate an elementary quantum network of entangled optical clocks. For frequency comparisons between the ions, we find that entanglement reduces the measurement uncertainty by nearly [Formula: see text], the value predicted for the Heisenberg limit. Today's optical clocks are typically limited by dephasing of the probe laser20; in this regime, we find that entanglement yields a factor of 2 reduction in the measurement uncertainty compared with conventional correlation spectroscopy techniques20-22. We demonstrate this enhancement for the measurement of a frequency shift applied to one of the clocks. This two-node network could be extended to additional nodes23, to other species of trapped particles or-through local operations-to larger entangled systems.

5.
Nature ; 607(7920): 682-686, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35896644

RESUMEN

Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorization1 to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols such as the Bennett-Brassard scheme2 provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realized so far are subject to a new class of attacks exploiting a mismatch between the quantum states or measurements implemented and their theoretical modelling, as demonstrated in numerous experiments3-6. Here we present the experimental realization of a complete quantum key distribution protocol immune to these vulnerabilities, following Ekert's pioneering proposal7 to use entanglement to bound an adversary's information from Bell's theorem8. By combining theoretical developments with an improved optical fibre link generating entanglement between two trapped-ion qubits, we obtain 95,628 key bits with device-independent security9-12 from 1.5 million Bell pairs created during eight hours of run time. We take steps to ensure that information on the measurement results is inaccessible to an eavesdropper. These measurements are performed without space-like separation. Our result shows that provably secure cryptography under general assumptions is possible with real-world devices, and paves the way for further quantum information applications based on the device-independence principle.

6.
Phys Rev Lett ; 125(8): 080504, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909787

RESUMEN

We implement a two-qubit logic gate between a ^{43}Ca^{+} hyperfine qubit and a ^{88}Sr^{+} Zeeman qubit. For this pair of ion species, the S-P optical transitions are close enough that a single laser of wavelength 402 nm can be used to drive the gate but sufficiently well separated to give good spectral isolation and low photon scattering errors. We characterize the gate by full randomized benchmarking, gate set tomography, and Bell state analysis. The latter method gives a fidelity of 99.8(1)%, comparable to that of the best same-species gates and consistent with known sources of error.

7.
Phys Rev Lett ; 124(11): 110501, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242699

RESUMEN

We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two ^{88}Sr^{+} qubits are entangled via the polarization degree of freedom of two spontaneously emitted 422 nm photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beam splitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate heralded Bell pairs with fidelity 94% at an average rate 182 s^{-1} (success probability 2.18×10^{-4}).

8.
Phys Rev Lett ; 123(11): 110503, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31573247

RESUMEN

Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error ε_{m} for a ^{43}Ca^{+} trapped-ion qubit in the small-error regime and find ε_{m}<10^{-4} for storage times t≲50 ms. This exceeds gate or measurement times by three orders of magnitude. Using randomized benchmarking, at t=1 ms we measure ε_{m}=1.2(7)×10^{-6}, around ten times smaller than that extrapolated from the T_{2}^{*} time, and limited by instability of the atomic clock reference used to benchmark the qubit.

9.
Nat Commun ; 7: 11218, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27075230

RESUMEN

The Hamiltonian of a closed quantum system governs its complete time evolution. While Hamiltonians with time-variation in a single basis can be recovered using a variety of methods, for more general Hamiltonians the presence of non-commuting terms complicates the reconstruction. Here using a single trapped ion, we propose and experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. We measure the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. The initially unknown Hamiltonian arises from transporting an ion through a static laser beam. Hamiltonian estimation allows us to estimate the spatial beam intensity profile and the ion velocity as a function of time. The estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high-operational fidelities in quantum control.

10.
Phys Rev Lett ; 116(14): 140402, 2016 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-27104686

RESUMEN

We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δα=15.6, corresponding to a distance of 240 nm between the two superposed wave packets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA