Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Catal ; 14(1): 124-130, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38205024

RESUMEN

Catalyst-controlled C-H functionalization using donor/acceptor carbenes has been shown to be an efficient process capable of high levels of site control and stereocontrol. This study demonstrated that the scope of the donor/acceptor carbene C-H functionalization can be extended to systems where the acceptor group is a phosphonate. When using the optimized dirhodium catalyst, Rh2(S-di-(4-Br)TPPTTL)4, ((aryl)(diazo)methyl)phosphonates undergo highly enantioselective (84-99% ee) and site-selective (>30:1 r.r.) benzylic C-H functionalization. The phosphonate group is much more sterically demanding than the previously studied carboxylate ester group, leading to much higher selectivity for a primary site versus more sterically crowded positions. The effectiveness of this methodology has been demonstrated by the late-stage primary C-H functionalization of estrone, adapalene, (S)-naproxen, clofibrate, and gemfibrozil derivatives.

2.
J Org Chem ; 88(7): 4309-4316, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-36921217

RESUMEN

Hole-transport materials (HTMs) based on triarylamine derivatives play important roles in organic electronics applications including organic light-emitting diodes and perovskite solar cells. For some applications, triarylamine derivatives bearing appropriate binding groups have been used to functionalize surfaces, while others have been incorporated as side chains into polymers to manipulate the processibility of HTMs for device applications. However, only a few approaches have been used to incorporate a single surface-binding group or polymerizable group into triarylamine materials. Here, we report that Rh-carbenoid chemistry can be used to insert carboxylic esters and norbornene functional groups into sp2 C-H bonds of a simple triarylamine and a 4,4'-bis(diarylamino)biphenyl, respectively. The norbenene-functionalized monomer was polymerized by ring-opening metathesis; the electrochemical, optical, and charge-transport properties of these materials were similar to those of related materials synthesized by conventional means. This method potentially offers straightforward access to a diverse range of HTMs with different functional groups.

3.
Angew Chem Int Ed Engl ; 60(37): 20350-20357, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34273126

RESUMEN

We report a novel glycan array architecture that binds the mannose-specific glycan binding protein, concanavalin A (ConA), with sub-femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted-from thiol-(meth)acrylate polymerization with thiol-ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted-to/grafted-from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.

4.
Chemistry ; 26(51): 11782-11795, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32253776

RESUMEN

Synthetic carbohydrate receptors (SCRs) that selectively recognize cell-surface glycans could be used for detection, drug delivery, or as therapeutics. Here we report the synthesis of seven new C2h symmetric tetrapodal SCRs. The structures of these SCRs possess a conserved biaryl core, and they vary in the four heterocyclic binding groups that are linked to the biaryl core via secondary amines. Supramolecular association between these SCRs and five biologically relevant C1 -O-octyloxy glycans, α/ß-glucoside (α/ß-Glc), α/ß-mannoside (α/ß-Man), and ß-galactoside (ß-Gal), was studied by mass spectrometry, 1 H NMR titrations, and molecular modeling. These studies revealed that selectivity can be achieved in these tetrapodal SCRs by varying the heterocyclic binding group. We found that SCR017 (3-pyrrole), SCR021 (3-pyridine), and SCR022 (2-phenol) bind only to ß-Glc. SCR019 (3-indole) binds only to ß-Man. SCR020 (2-pyridine) binds ß-Man and α-Man with a preference to the latter. SCR018 (2-indole) binds α-Man and ß-Gal with a preference to the former. The glycan guests bound within their SCR hosts in one of three supramolecular geometries: center-parallel, center-perpendicular, and off-center. Many host-guest combinations formed higher stoichiometry complexes, 2:1 glycan⋅SCR or 1:2 glycan⋅SCR, where the former are driven by positive allosteric cooperativity induced by glycan-glycan contacts.


Asunto(s)
Carbohidratos/síntesis química , Lectinas Tipo C/química , Lectinas de Unión a Manosa/química , Manosa/síntesis química , Polisacáridos/química , Receptores Artificiales/química , Receptores de Superficie Celular/química , Carbohidratos/química , Espectroscopía de Resonancia Magnética , Manosa/química , Receptor de Manosa , Modelos Moleculares , Estructura Molecular
5.
Faraday Discuss ; 219(0): 77-89, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31364656

RESUMEN

Interactions between cell surface glycans and glycan binding proteins (GBPs) have a central role in the immune response, pathogen-host recognition, cell-cell communication, and a myriad other biological processes. Because of the weak association between GBPs and glycans in solution, multivalent and cooperative interactions in the dense glycocalyx have an outsized role in directing binding affinity and selectivity. However, a major challenge in glycobiology is that few experimental approaches exist for examining and understanding quantitatively how glycan density affects avidity with GBPs, and there is a need for new tools that can fabricate glycan arrays with the ability to vary their density controllably and systematically in each feature. Here, we use thiol-ene reactions to fabricate glycan arrays using a recently developed photochemical printer that leverages a digital micromirror device and microfluidics to create multiplexed patterns of immobilized mannosides, where the density of mannosides in each feature was varied by dilution with an inert spacer allyl alcohol. The association between these immobilized glycans and FITC-labeled concanavalin A (ConA) - a tetrameric GBP that binds to mannosides multivalently - was measured by fluorescence microscopy. We observed that the fluorescence decreased nonlinearly with increasing spacer concentration in the features, and we present a model that relates the average mannoside-mannoside spacing to the abrupt drop-off in ConA binding. Applying these recent advances in microscale photolithography to the challenge of mimicking the architecture of the glycocalyx could lead to a rapid understanding of how information is trafficked on the cell surface.


Asunto(s)
Bioimpresión/métodos , Concanavalina A/metabolismo , Manósidos/metabolismo , Análisis por Micromatrices/métodos , Concanavalina A/análisis , Fluoresceína-5-Isotiocianato/análisis , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescencia , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Manósidos/química , Modelos Moleculares , Unión Proteica
6.
J Med Chem ; 62(8): 4110-4119, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30925051

RESUMEN

Zika virus (ZIKV), a mosquito-borne flavivirus, is a global health concern because of its association with severe neurological disorders. Currently, there are no antiviral therapies that have been specifically approved to treat ZIKV, and there is an urgent need to develop effective anti-ZIKV agents. Here, we report anti-ZIKV activity of 16 synthetic carbohydrate receptors (SCRs) that inhibit ZIKV infection in Vero and HeLa cells. Using a ZIKV reporter virus particle-based infection assay, our data demonstrates these SCRs are highly potent with IC50s as low as 0.16 µM and negligible toxicity at several-fold higher concentrations. Time-of-addition studies showed that these SCRs inhibit the early stages of the virus infection, which is consistent with the proposed mode of action, where the SCRs likely inhibit binding between the virus and cell-surface glycans, thereby preventing viral entry into the cells and, as such, this study demonstrates a potential new strategy against ZIKV.


Asunto(s)
Antivirales/química , Carbohidratos/química , Receptores Artificiales/química , Virus Zika/fisiología , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Células HeLa , Humanos , Receptores Artificiales/síntesis química , Receptores Artificiales/metabolismo , Relación Estructura-Actividad , Suramina/química , Suramina/farmacología , Células Vero , Internalización del Virus/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/patología
7.
ACS Biomater Sci Eng ; 5(6): 3131-3138, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33405545

RESUMEN

Spatially encoded glycan microarrays promise to rapidly accelerate our understanding of glycan binding in myriad biological processes, which could lead to new therapeutics and previously unknown drug targets. Here, we bring together a digital micromirror device, microfluidic introduction of inks, and advanced surface photochemistry to produce multiplexed glycan microarrays with reduced feature diameters, an increased number of features per array, and precise control of glycan density at each feature. The versatility of this platform was validated by printing two distinct glycan microarrays where, in the first, different glycans were immobilized to create a multiplexed array and, in another, the density of a single glycan was varied systematically to explore the effect of surface presentation on lectin-glycan binding. For lectin binding studies on these miniaturized microarrays, a microfluidic incubation chip was developed that channels multiple different protein solutions over the array. Using the multiplexed array, binding between eight lectin solutions and five different glycosides was determined, such that a single array can interrogate the binding between 40 lectin-glycan combinations. The incubation chip was then used on the array with varied glycan density to study the effects of glycan density on lectin binding. These results show that this novel printer could rapidly advance our understanding of critical unresolved questions in glycobiology, while simultaneously increasing the throughput and reducing the cost of these experiments.

8.
Chemistry ; 24(52): 13971-13982, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30071154

RESUMEN

Synthetic carbohydrate receptors could serve as agents for disease detection, drug delivery, or even therapeutics, however, they are rarely used for these applications because they bind weakly and with a preference towards the all-equatorial glucosides that are not prevalent on the cell surface. Herein the binding of 8 receptors with 5 distinct octyloxy pyranosides, which was measured by mass spectrometry and by 1 H NMR titrations in CD2 Cl2 at 298 K, is reported, providing binding affinities that vary from ≈101 -104 m-1 . Although the receptors are promiscuous, 1 shows selectivity for ß-Man at a ratio of 103:1 ß-Man:ß-Gal, receptors 2-4 and 6 have preference for α-Man, 5 is selective for ß-Gal, and 10 prefers α-Glc (Man=mannose; Gal=galactose, Glc=glucose). A variety of 1D and 2D NMR, and computational techniques were used to determine the thermodynamic binding parameters (ΔHo and ΔSo ) and the structure of the host-guest complex, revealing that dimeric receptor 10 binds ß-Man with increased enthalpy, but a larger entropic penalty than 1. The first-principles modelling suggests that 10⋅ß-Man forms an inclusion-type complex where the glycan engages both monomeric subunits of 10 through H-bonding and C-H⋅⋅⋅π interactions. Like natural glycan-binding proteins, these receptors bind pyranosides by accessing multivalent and cooperative interactions, and these studies suggest a new approach towards biomimetic synthetic carbohydrate receptors, where conformational flexibility and promiscuity are incorporated into design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...