Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808736

RESUMEN

The aim of this work was to study the crystallization kinetics and melting behaviour of polymer blend nanocomposites based on poly (L-lactic acid) (PLLA), nylon 11 and tungsten disulfide nanotubes (INT-WS2), which are layered transition metal dichalcogenides (TMDCs), using non-isothermal differential scanning calorimetry (DSC). Blends containing different nylon 11 contents ranging from 20 to 80 wt.% with or without INT-WS2 were prepared by melt mixing. Evaluation of their morphology with high-resolution SEM imaging proved that the incorporation of inorganic nanotubes into the immiscible PLLA/nylon 11 mixtures led to an improvement in the dispersibility of the nylon 11 phase, a reduction in its average domain size and, consequently, an increase in its interfacial area. The crystallization temperatures of these PLLA/nylon 11-INT blends were influenced by the cooling rate and composition. In particular, the DSC results appear to demonstrate that the 1D-TMDCs WS2 within the PLLA/nylon 11-INT blend nanocomposites initiated nucleation in both polymeric components, with the effect being more pronounced for PLLA. Moreover, the nucleation activity and activation energy were calculated to support these findings. The nucleation effect of INT-WS2, which influences the melting behaviour of PLLA, is highly important, particularly when evaluating polymer crystallinity. This study opens up new perspectives for the development of advanced PLA-based nanomaterials that show great potential for ecological and biomedical applications.

2.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502987

RESUMEN

In the current study, inorganic fullerene (IF)-like tungsten disulphide (WS2) nanoparticles from layered transition metal dichalcogenides (TMDCs) were introduced into a poly(L-lactic acid) (PLLA) polymer matrix to generate novel bionanocomposite materials through an advantageous melt-processing route. The effectiveness of employing IF-WS2 on the morphology and property enhancement of the resulting hybrid nanocomposites was evaluated. The non-isothermal melt-crystallization and melting measurements revealed that the crystallization and melting temperature as well as the crystallinity of PLLA were controlled by the cooling rate and composition. The crystallization behaviour and kinetics were examined by using the Lui model. Moreover, the nucleating effect of IF-WS2 was investigated in terms of Gutzow and Dobreva approaches. It was discovered that the incorporation of increasing IF-WS2 contents led to a progressive acceleration of the crystallization rate of PLLA. The morphology and kinetic data demonstrate the high performance of these novel nanocomposites for industrial applications.

3.
Polymers (Basel) ; 13(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34279357

RESUMEN

In the present work, hybrid nanocomposite materials were obtained by a solution blending of poly(l-lactic acid) (PLLA) and layered transition-metal dichalcogenides (TMDCs) based on tungsten disulfide nanosheets (2D-WS2) as a filler, varying its content between 0 and 1 wt%. The non-isothermal cold- and melt-crystallization and melting behavior of PLLA/2D-WS2 were investigated. The overall crystallization rate, final crystallinity, and subsequent melting behavior of PLLA were controlled by both the incorporation of 2D-WS2 and variation of the cooling/heating rates. In particular, the analysis of the cold-crystallization behavior of the PLLA matrix showed that the crystallization rate of PLLA was reduced after nanosheet incorporation. Unexpectedly for polymer nanocomposites, a drastic change from retardation to promotion of crystallization was observed with increasing the nanosheet content, while the melt-crystallization mechanism of PLLA remained unchanged. On the other hand, the double-melting peaks, mainly derived from melting-recrystallization-melting processes upon heating, and their dynamic behavior were coherent with the effect of 2D-WS2 involved in the crystallization of PLLA. Therefore, the results of the present study offer a new perspective for the potential of PLLA/hybrid nanocomposites in targeted applications.

4.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209153

RESUMEN

Novel multifunctional biopolymer blend nanocomposites composed of poly(vinylidene fluoride)(PVDF) and tungsten disulfide nanotubes (INT-WS2) that are layered transition metal dichalcogenides (TMDCs) were easily prepared by applying an economical, scalable, and versatile melt processing route. Furthermore, their synergistic effect to enhance the properties of poly(L-lactic acid) (PLLA) matrix was investigated. From morphological analysis, it was shown that the incorporation of 1D (INT)-WS2 into the immiscible PLLA/PVDF mixtures (weight ratios: 80/20, 60/40, 40/60, and 20/80) led to an improvement in the dispersibility of the PVDF phase, a reduction in its average domain size, and consequently a larger interfacial area. In addition, the nanoparticles INT-WS2 can act as effective nucleating agents and reinforcing fillers in PLLA/PVDF blends, and as such, greatly improve their thermal and dynamic-mechanical properties. The improvements are more pronounced in the ternary blend nanocomposites with the lowest PVDF content, likely due to a synergistic effect of both highly crystalline PVDF and 1D-TMDCs nano-additives on the matrix performance. Considering the promising properties of the developed materials, the inexpensive synthetic process, and the extraordinary properties of environmentally friendly and biocompatibe 1D-TMDCs WS2, this work may open up opportunities to produce new PLLA/PVDF hybrid nanocomposites that show great potential for biomedical applications.

5.
Polymers (Basel) ; 12(11)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207692

RESUMEN

Layered transition-metal dichalcogenides (TMDCs) based on tungsten disulfide nanosheets (2D-WS2) were introduced via melt processing into poly(l-lactic acid) (PLLA) to generate PLLA/2D-WS2 nanocomposite materials. The effects of the 2D-WS2 on the morphology, crystallization, and biodegradation behavior of PLLA were investigated. In particular, the non-isothermal melt-crystallization of neat PLLA and PLLA/2D-WS2 nanocomposites were analyzed in detail by varying both the cooling rate and 2D-WS2 loading. The kinetic parameters of PLLA chain crystallization are successfully described using the Liu model. It was found that the PLLA crystallization rate was reduced with 2D-WS2 incorporation, while the crystallization mechanism and crystal structure of PLLA remained unchanged in spite of nanoparticle loading. This was due to the PLLA chains not being able to easily adsorb on the WS2 nanosheets, hindering crystal growth. In addition, from surface morphology analysis, it was observed that the addition of 2D-WS2 facilitated the enzymatic degradation of poorly biodegradable PLLA using a promising strain of actinobacteria, Lentzea waywayandensis. The identification of more suitable enzymes to break down PLLA nanocomposites will open up new avenues of investigation and development, and it will also lead to more environmentally friendly, safer, and economic routes for bioplastic waste management.

6.
Polymers (Basel) ; 10(2)2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-30966202

RESUMEN

Nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and tungsten disulfide inorganic nanotubes (INT-WS2) were prepared by blending in solution, and the effects of INT-WS2 on the isothermal crystallization behavior and kinetics of PHBV were investigated for the first time. The isothermal crystallization process was studied in detail using various techniques, with emphasis on the role of INT-WS2 concentration. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) showed that, in the nucleation-controlled regime, crystallization rates of PHBV in the nanocomposites are influenced by the INT-WS2 loading. Our results demonstrated that low loadings of INT-WS2 (0.1⁻1.0 wt %) increased the crystallization rates of PHBV, reducing the fold surface free energy by up to 24%. This is ascribed to the high nucleation efficiency of INT-WS2 on the crystallization of PHBV. These observations facilitate a deeper understanding of the structure-property relationships in PHBV biopolymer nanocomposites and are useful for their practical applications.

7.
J Mater Chem B ; 2(28): 4509-4520, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32261553

RESUMEN

The manuscript presents the use of tungsten disulfide inorganic nanotubes (INT-WS2) to fabricate advanced poly(ether ether ketone) (PEEK) biomaterials by a traditional melt processing technique. This strategy offers an attractive way to combine the merits of organic and inorganic materials into novel hybrid systems with improved performance. The effect of INT-WS2 content on the morphology, thermal stability, crystallization behaviour, thermal conductivity, mechanical and tribological properties is investigated in detail with various techniques. The results indicate that these inorganic nanotubes can be efficiently incorporated into the biopolymer matrix without the need for modifiers or surfactants, resulting in a very homogenous dispersion. Additionally, it is found that the increase in INT-WS2 concentration leads to changes in the crystallization behaviour without modifying the crystalline structure of PEEK in the nanocomposites. The incorporation of INT-WS2 produces higher improvements in the degradation temperature, storage modulus, thermal expansion coefficient, hardness, coefficient of friction and wear resistance of the polymer than the addition of other inorganic nanofillers or carbon nanotubes, providing an effective balance between performance, cost effectiveness and processability. These novel nanocomposites are of great interest for use in biomedical applications, particularly for orthopaedic and trauma implants.

8.
ACS Appl Mater Interfaces ; 5(19): 9691-700, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24015820

RESUMEN

Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

9.
Materials (Basel) ; 6(8): 3171-3193, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28811429

RESUMEN

Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

10.
J Phys Chem B ; 116(27): 7959-69, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22697425

RESUMEN

The rheological and tribological properties of single-walled carbon nanotube (SWCNT)-reinforced poly(phenylene sulphide) (PPS) and poly(ether ether ketone) (PEEK) nanocomposites prepared via melt-extrusion were investigated. The effectiveness of employing a dual-nanofiller strategy combining polyetherimide (PEI)-wrapped SWCNTs with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles for property enhancement of the resulting hybrid composites was evaluated. Viscoelastic measurements revealed that the complex viscosity η, storage modulus G', and loss modulus G″ increased with SWCNT content. In the low-frequency region, G' and G″ became almost independent of frequency at higher SWCNT loadings, suggesting a transition from liquid-like to solid-like behavior. The incorporation of increasing IF-WS2 contents led to a progressive drop in η and G' due to a lubricant effect. PEEK nanocomposites showed lower percolation threshold than those based on PPS, ascribed to an improved SWCNT dispersion due to the higher affinity between PEI and PEEK. The SWCNTs significantly lowered the wear rate but only slightly reduced the coefficient of friction. Composites with both nanofillers exhibited improved wear behavior, attributed to the outstanding tribological properties of these nanoparticles and a synergistic reinforcement effect. The combination of SWCNTs with IF-WS2 is a promising route for improving the tribological and rheological performance of thermoplastic nanocomposites.


Asunto(s)
Disulfuros/química , Nanocompuestos/química , Nanopartículas/química , Nanotubos de Carbono/química , Temperatura , Tungsteno/química , Benzofenonas , Cetonas/química , Estructura Molecular , Tamaño de la Partícula , Polietilenglicoles/química , Polímeros/química , Reología , Propiedades de Superficie
11.
J Phys Chem B ; 116(6): 1788-95, 2012 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-22257171

RESUMEN

The isothermal crystallization and subsequent melting behavior of isotactic polypropylene (iPP) nucleated with different nucleating agents (NAs) are investigated. Tungsten disulfide (IF-WS(2)) and N,N'-dicyclohexyl-2,6-naphthalene (NJ) and dual-additive mixtures are introduced into an iPP matrix to generate new materials that exhibit variable α- and ß-polymorphism. As shown in previous work, small amounts of IF-WS(2) or NJ have a nucleating effect during the crystallization of iPP. However, the isothermal crystallization and melting behavior of iPP nucleated by dual α(IF-WS(2))/ß(NJ) additive systems are dependent on both the NA composition balance and the crystallization temperature. In particular, our results demonstrate that it is possible to obtain any α-phase to ß-phase content ratio by controlling the composition of NAs under appropriate isothermal crystallization conditions. The nucleating behavior of the additives can be illustrated by competitive nucleation, and the correlation between crystallization and melting temperatures and relative α- and ß-crystals content in iPP in the nanocomposites is discussed.

12.
J Phys Chem B ; 115(37): 10836-43, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21823652

RESUMEN

The dynamic crystallization and melting behavior of isotactic polypropylene-tungsten disulfide (iPP/IF-WS(2)) nanocomposites incorporating a ß-nucleating agent is investigated by X-ray diffraction and differential scanning calorimetry. A conventional melt-processing strategy is employed to generate new materials that exhibit variable α and ß polymorphism under the appropriate kinetic conditions. The results show that when the dual additive system is employed the nucleation ability on isotactic polypropylene not only depends on the nucleation efficiency (NE) and relative content of the individual α and ß-nucleating agents, but also on the cooling rates employed. The nucleating behavior of the additives is explained by competitive nucleation, and the correlation between crystallization and melting temperatures and relative content of α and ß-crystals of iPP in the nanocomposites is discussed.

13.
ACS Appl Mater Interfaces ; 3(5): 1441-50, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21495713

RESUMEN

Multicomponent nanocomposite materials based on a high-performance epoxy system and single-walled carbon nanotubes (SWNTs) have been prepared. The noncovalent wrapping of nitric acid-treated SWNTs with a PEO-based amphiphilic block copolymer leads to a highly disaggregated filler with a boosted miscibility in the epoxy matrix, allowing its dispersion without organic solvents. Although direct dispersion of acid-treated SWNTs results in modestly improved epoxy matrix mechanical properties, the incorporation of wrapped SWNTs produces a huge increase in toughness (276% improvement at 0.5 wt % loading) and impact strength (193% at 0.5 wt % loading) with no detrimental effect on the elastic properties. A synergistic effect between SWNTs and the block copolymer is revealed on the basis of tensile and impact strength results. Atomic force microscopy has been applied, obtaining stiffness mappings that identify nanostructure features responsible of the dynamic mechanical behavior. The electrical percolation threshold is greatly reduced, from 0.31 to 0.03 wt % SWNTs when block copolymer-wrapped SWNTs are used, and all the measured conductivity values increased up to a maximum of 7 orders of magnitude with respect to the baseline matrix (1 wt % wrapped-SWNTs loading). This approach provides an efficient way to disperse barely dispersible SWNTs without solvents into an epoxy matrix, and to generate substantial improvements with small amounts of SWNTs.

14.
J Phys Chem B ; 115(12): 2850-6, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21388105

RESUMEN

Differential scanning calorimetry (DSC) and time-resolved synchrotron X-ray diffraction have been used to investigate the dynamic crystallization behavior and crystalline structure of novel nanocomposites based on isotactic polypropylene (iPP) and molybdenum disulfide inorganic nanotubes (INT-MoS(2)). The influence of the INT-MoS(2) content and different cooling rates on the crystallization behavior has been studied. The crystallization exothermic peak shifted to higher temperature, and the overall crystallization time was reduced by increasing the INT-MoS(2). The dynamic crystallization kinetics was analyzed using the Ozawa-Avrami method, which was successful in describing the dynamic crystallization behavior of these new nanocomposites. On the other hand, study of the nucleation activity using the Dobreva method revealed that the INT-MoS(2) had an efficient nucleation effect on the monoclinic crystal form of iPP. Moreover, this effect was corroborated by the results of the crystallization activation energy, calculated using Kissinger and Takhor methods, which also confirmed the fact that the addition of INT-MoS(2) made the molecular chains easier to crystallize and increased the crystallization rate of iPP.

15.
J Phys Chem B ; 115(10): 2248-55, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21338146

RESUMEN

Inorganic nanotubes (INT) were used for the first time to prepare advanced polymer nanocomposites by means of the most simple, cost-effective and ecologically friendly way (i.e., melt-processing route). The polymer matrix was isotactic polypropylene (iPP) and the inorganic fillers were molybdenum disulfide nanotubes (MoS(2)). The effect of INT-MoS(2) concentration and the crystallization temperature on the isothermal crystallization behavior of iPP was investigated using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXS). It has been observed that INT-MoS(2) affects the crystallization of nanocomposites remarkably, which can be attributed to the nucleating effect of INT-MoS(2) on the monoclinic α-crystal form of iPP. Other parameters such as the Avrami exponent and the fold surface free energy of crystallization of iPP chains in the nanocomposites were obtained in order to determine the effect of the INT-MoS(2) on them. The addition of INT-MoS(2) remarkably influences the kinetics of nucleation and growth of iPP with a decrease in the fold surface free energy of 11-24%.

16.
J Phys Chem B ; 114(35): 11444-53, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20722359

RESUMEN

The combination of high-performance thermoplastic poly(ether ether ketone) (PEEK) with inorganic fullerene-like tungsten disulfide (IF-WS(2)) nanoparticles offers an attractive way to combine the merits of organic and inorganic materials into novel polymer nanocomposite materials. Here, we report the processing of novel PEEK/IF-WS(2) nanocomposites, which overcome the nanoparticle agglomerate formation and provide PEEK-particle interactions. The IF-WS(2) nanoparticles do not require exfoliation or modification, making it possible to obtain stronger, lighter materials without the complexity and processing cost associated with these treatments. The nanocomposites were fabricated by melt blending, after a predispersion step based on ball milling and mechanical treatments in organic solvent, which leads to the dispersion of individually IF-WS(2) nanoparticles in the PEEK matrix as confirmed by scanning electron microscopy. In order to determine the performance of the PEEK/IF-WS(2) nanocomposites for potential critical applications, particularly for the aircraft industry, we have extensively investigated these materials with a wide range of structural, thermal, and mechanical techniques using time-resolved synchrotron X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dynamic-mechanical analysis, and tensile and impact tests as well as thermal measurements. Modulus, tensile strengh, thermal stability, and thermal conductivity of PEEK exhibited remarkable improvement with the addition of IF-WS(2).

17.
J Phys Chem B ; 113(30): 10104-11, 2009 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-19719278

RESUMEN

The use of tungsten disulfide (WS2) nanoparticles offers the opportunity to produce novel and advanced polymer-based nanocomposite materials via melt blending. The developed materials, based on the high-performance engineering thermoplastic polyphenylene sulfide (PPS), display a unique nanostructure on variation of the nanoparticle concentration, as confirmed by time-resolved synchrotron X-ray diffraction. The cold-crystallization kinetics and morphology of PPS chains under confined conditions in the nanocomposite, as determined by differential scanning calorimetry (DSC) and atomic force microscopy (AFM), also manifest a dependence on the IF-WS2 concentration which are unexpected for polymer nanocomposites. The addition of IF-WS2 with concentrations greater than or equal to 0.5 wt % of IF-WS2 remarkably improves the mechanical performance of PPS with an increase in the storage modulus of 40-75%.

18.
J Phys Chem B ; 113(20): 7107-15, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19438275

RESUMEN

The dynamic crystallization kinetics of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene WS2 nanopartices (IF-WS2) content varying from 0.05 to 8 wt % has been studied using differential scanning calorimetry (DSC). The analysis of the crystallization at different cooling rates demonstrates that the completely isokinetic description of the crystallization process is not possible. However, the isoconversional methods in combination with the JMAEK equation provide a better understanding of the kinetics of the dynamic crystallization process. The addition of IF-WS2 influences the crystallization kinetics of PPS but in ways unexpected for polymer nanocomposites. A drastic change from retardation to promotion of crystallization is observed with increasing nanoparticle content. In the same way, the results of the nucleation activity and the effective energy barrier confirmed the unique dependence of the crystallization behavior of PPS on composition. In addition, the morphological data obtained from the polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction is consistent with results of the crystallization kinetics of PPS/IF-WS2 nanocomposites.

19.
J Phys Chem B ; 112(47): 14819-28, 2008 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-18954107

RESUMEN

The isothermal crystallization of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2) has been studied from a thermal and morphological point of view, using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction. All the analyses revealed that the incorporation of the IF-WS2 altered significantly the crystallization behavior of PPS, in a way strongly dependent with the nanocomposite composition. The addition of IF-WS2 in 0.1 wt % proportion retarded the crystallization of PPS by increasing its fold surface free energy in a 10%. However, addition of the nanoparticles in excess of 1 wt % results in a promotion of the crystallization rate with reduction of the fold surface free energy to half the value of pure PPS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...