Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(4-1): 044314, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755838

RESUMEN

Ensembles of coupled nonlinear oscillators are a popular paradigm and an ideal benchmark for analyzing complex collective behaviors. The onset of cluster synchronization is found to be at the core of various technological and biological processes. The current literature has investigated cluster synchronization by focusing mostly on the case of attractive coupling among the oscillators. However, the case of two coexisting competing interactions is of practical interest due to their relevance in diverse natural settings, including neuronal networks consisting of excitatory and inhibitory neurons, the coevolving social model with voters of opposite opinions, and ecological plant communities with both facilitation and competition, to name a few. In the present article, we investigate the impact of repulsive spanning trees on cluster formation within a connected network of attractively coupled limit-cycle oscillators. We successfully predict which nodes belong to each cluster and the emergent frustration of the connected networks independent of the particular local dynamics at the network nodes. We also determine local asymptotic stability of the cluster states using an approach based on the formulation of a master stability function. We additionally validate the emergence of solitary states and antisynchronization for some specific choices of spanning trees and networks.

2.
Sci Rep ; 13(1): 14331, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653103

RESUMEN

We study the intricate interplay between ecological and evolutionary processes through the lens of the prisoner's dilemma game. But while previous studies on cooperation amongst selfish individuals often assume instantaneous interactions, we take into consideration delays to investigate how these might affect the causes underlying prosocial behavior. Through analytical calculations and numerical simulations, we demonstrate that delays can lead to oscillations, and by incorporating also the ecological variable of altruistic free space and the evolutionary strategy of punishment, we explore how these factors impact population and community dynamics. Depending on the parameter values and the initial fraction of each strategy, the studied eco-evolutionary model can mimic a cyclic dominance system and even exhibit chaotic behavior, thereby highlighting the importance of complex dynamics for the effective management and conservation of ecological communities. Our research thus contributes to the broader understanding of group decision-making and the emergence of moral behavior in multidimensional social systems.


Asunto(s)
Cristalino , Lentes , Humanos , Altruismo , Evolución Biológica , Toma de Decisiones
3.
Chaos ; 33(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307164

RESUMEN

Since Galileo's time, the pendulum has evolved into one of the most exciting physical objects in mathematical modeling due to its vast range of applications for studying various oscillatory dynamics, including bifurcations and chaos, under various interests. This well-deserved focus aids in comprehending various oscillatory physical phenomena that can be reduced to the equations of the pendulum. The present article focuses on the rotational dynamics of the two-dimensional forced-damped pendulum under the influence of the ac and dc torque. Interestingly, we are able to detect a range of the pendulum's length for which the angular velocity exhibits a few intermittent extreme rotational events that deviate significantly from a certain well-defined threshold. The statistics of the return intervals between these extreme rotational events are supported by our data to be spread exponentially at a specific pendulum's length beyond which the external dc and ac torque are no longer sufficient for a full rotation around the pivot. The numerical results show a sudden increase in the size of the chaotic attractor due to interior crisis, which is the source of instability that is responsible for triggering large amplitude events in our system. We also notice the occurrence of phase slips with the appearance of extreme rotational events when the phase difference between the instantaneous phase of the system and the externally applied ac torque is observed.

5.
Phys Rev E ; 107(3-1): 034313, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37073037

RESUMEN

With synchronization being one of nature's most ubiquitous collective behaviors, the field of network synchronization has experienced tremendous growth, leading to significant theoretical developments. However, most previous studies consider uniform connection weights and undirected networks with positive coupling. In the present article, we incorporate the asymmetry in a two-layer multiplex network by assigning the ratio of the adjacent nodes' degrees as the weights to the intralayer edges. Despite the presence of degree-biased weighting mechanism and attractive-repulsive coupling strengths, we are able to find the necessary conditions for intralayer synchronization and interlayer antisynchronization and test whether these two macroscopic states can withstand demultiplexing in a network. During the occurrence of these two states, we analytically calculate the oscillator's amplitude. In addition to deriving the local stability conditions for interlayer antisynchronization via the master stability function approach, we also construct a suitable Lyapunov function to determine a sufficient condition for global stability. We provide numerical evidence to show the necessity of negative interlayer coupling strength for the occurrence of antisynchronization, and such repulsive interlayer coupling coefficients cannot destroy intralayer synchronization.

6.
J Theor Biol ; 564: 111446, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36868345

RESUMEN

Predator-prey interactions are one of ecology's central research themes, but with many interdisciplinary implications across the social and natural sciences. Here we consider an often-overlooked species in these interactions, namely parasites. We first show that a simple predator-prey-parasite model, inspired by the classical Lotka-Volterra equations, fails to produce a stable coexistence of all three species, thus failing to provide a biologically realistic outcome. To improve this, we introduce free space as a relevant eco-evolutionary component in a new mathematical model that uses a game-theoretical payoff matrix to describe a more realistic setup. We then show that the consideration of free space stabilizes the dynamics by means of cyclic dominance that emerges between the three species. We determine the parameter regions of coexistence as well as the types of bifurcations leading to it by means of analytical derivations as well as by means of numerical simulations. We conclude that the consideration of free space as a finite resource reveals the limits of biodiversity in predator-prey-parasite interactions, and it may also help us in the determination of factors that promote a healthy biota.


Asunto(s)
Parásitos , Animales , Modelos Biológicos , Conducta Predatoria , Modelos Teóricos , Evolución Biológica , Dinámica Poblacional , Cadena Alimentaria
7.
Chaos ; 32(10): 103122, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36319275

RESUMEN

The persistence of biodiversity of species is a challenging proposition in ecological communities in the face of Darwinian selection. The present article investigates beyond the pairwise competitive interactions and provides a novel perspective for understanding the influence of higher-order interactions on the evolution of social phenotypes. Our simple model yields a prosperous outlook to demonstrate the impact of perturbations on intransitive competitive higher-order interactions. Using a mathematical technique, we show how alone the perturbed interaction network can quickly determine the coexistence equilibrium of competing species instead of solving a large system of ordinary differential equations. It is possible to split the system into multiple feasible cluster states depending on the number of perturbations. Our analysis also reveals that the ratio between the unperturbed and perturbed species is inversely proportional to the amount of employed perturbation. Our results suggest that nonlinear dynamical systems and interaction topologies can be interplayed to comprehend species' coexistence under adverse conditions. Particularly, our findings signify that less competition between two species increases their abundance and outperforms others.


Asunto(s)
Biodiversidad , Modelos Biológicos , Ecosistema
8.
PLoS One ; 17(8): e0272719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35944035

RESUMEN

Most environments favor defection over cooperation due to natural selection. Nonetheless, the emergence of cooperation is omnipresent in many biological, social, and economic systems, quite contrary to the well-celebrated Darwinian theory of evolution. Much research has been devoted to better understanding how and why cooperation persists among self-interested individuals despite their competition for limited resources. Here we go beyond a single social dilemma since individuals usually encounter various social challenges. In particular, we propose and study a mathematical model incorporating both the prisoner's dilemma and the snowdrift game. We further extend this model by considering ecological signatures like mutation and selfless one-sided contribution of altruist free space. The nonlinear evolutionary dynamics that results from these upgrades offer a broader range of equilibrium outcomes, and it also often favors cooperation over defection. With the help of analytical and numerical calculations, our theoretical model sheds light on the mechanisms that maintain biodiversity, and it helps to explain the evolution of social order in human societies.


Asunto(s)
Conducta Cooperativa , Teoría del Juego , Evolución Biológica , Humanos , Mutación , Dilema del Prisionero
9.
Chaos ; 31(1): 011105, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33754786

RESUMEN

The role of a new form of dynamic interaction is explored in a network of generic identical oscillators. The proposed design of dynamic coupling facilitates the onset of a plethora of asymptotic states including synchronous states, amplitude death states, oscillation death states, a mixed state (complete synchronized cluster and small amplitude desynchronized domain), and bistable states (coexistence of two attractors). The dynamical transitions from the oscillatory to the death state are characterized using an average temporal interaction approximation, which agrees with the numerical results in temporal interaction. A first-order phase transition behavior may change into a second-order transition in spatial dynamic interaction solely depending on the choice of initial conditions in the bistable regime. However, this possible abrupt first-order like transition is completely non-existent in the case of temporal dynamic interaction. Besides the study on periodic Stuart-Landau systems, we present results for the paradigmatic chaotic model of Rössler oscillators and the MacArthur ecological model.

10.
J Theor Biol ; 518: 110606, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33582077

RESUMEN

Ecology and evolution are inherently linked, and studying a mathematical model that considers both holds promise of insightful discoveries related to the dynamics of cooperation. In the present article, we use the prisoner's dilemma (PD) game as a basis for long-term apprehension of the essential social dilemma related to cooperation among unrelated individuals. We upgrade the contemporary PD game with an inclusion of evolution-induced act of punishment as a third competing strategy in addition to the traditional cooperators and defectors. In a population structure, the abundance of ecologically-viable free space often regulates the reproductive opportunities of the constituents. Hence, additionally, we consider the availability of free space as an ecological footprint, thus arriving at a simple eco-evolutionary model, which displays fascinating complex dynamics. As possible outcomes, we report the individual dominance of cooperators and defectors as well as a plethora of mixed states, where different strategies coexist followed by maintaining the diversity in a socio-ecological framework. These states can either be steady or oscillating, whereby oscillations are sustained by cyclic dominance among different combinations of cooperators, defectors, and punishers. We also observe a novel route to cyclic dominance where cooperators, punishers, and defectors enter a coexistence via an inverse Hopf bifurcation that is followed by an inverse period doubling route.


Asunto(s)
Conducta Cooperativa , Teoría del Juego , Evolución Biológica , Humanos , Modelos Teóricos , Dilema del Prisionero
11.
Entropy (Basel) ; 22(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33286258

RESUMEN

Evolutionary game theory in the realm of network science appeals to a lot of research communities, as it constitutes a popular theoretical framework for studying the evolution of cooperation in social dilemmas. Recent research has shown that cooperation is markedly more resistant in interdependent networks, where traditional network reciprocity can be further enhanced due to various forms of interdependence between different network layers. However, the role of mobility in interdependent networks is yet to gain its well-deserved attention. Here we consider an interdependent network model, where individuals in each layer follow different evolutionary games, and where each player is considered as a mobile agent that can move locally inside its own layer to improve its fitness. Probabilistically, we also consider an imitation possibility from a neighbor on the other layer. We show that, by considering migration and stochastic imitation, further fascinating gateways to cooperation on interdependent networks can be observed. Notably, cooperation can be promoted on both layers, even if cooperation without interdependence would be improbable on one of the layers due to adverse conditions. Our results provide a rationale for engineering better social systems at the interface of networks and human decision making under testing dilemmas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA