Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 35(8): 650-658, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35343248

RESUMEN

The establishment of the legume-rhizobia symbiosis, termed the root-nodule symbiosis (RNS), requires elaborate interactions at the molecular level. The host plant-derived transcription factor NODULE INCEPTION (NIN) is known to be crucial for RNS, regulating associated processes such as alteration of root hair morphology, infection thread formation, and cell division during nodulation. This emphasizes the importance of the precise spatiotemporal regulation of NIN expression for the establishment of RNS; however, the detailed role of NIN promoter sequences in this process remains unclear. The daphne mutant, a nin mutant allele containing a chromosomal translocation approximately 7 kb upstream of the start codon, does not form nodules but does form infection threads, indicating that the region within 7 kb of the NIN start codon contributes to NIN expression during infection thread formation. CYCLOPS binds to a CYCLOPS response element (CYC-RE) in the NIN promoter, and cyclops mutants are defective in infection thread formation. Here, we performed complementation analysis in nin mutants, using various truncated forms of the NIN promoter, and found that the CYC-RE is important for infection thread formation. Additionally, the CYC-RE deletion mutant, generated through CRISPR/Cas9 technology, displayed a significant reduction in infection thread formation, indicating that the CYC-RE is important for the fine-tuning of NIN expression during this process. However, the fact that infection thread formation is not completely abolished in the CYC-RE deletion mutant suggests that cis and trans factors other than CYCLOPS and the CYC-RE may cooperatively regulate NIN expression for the induction of infection thread formation. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Lotus , Rhizobium , Codón Iniciador/metabolismo , Regulación de la Expresión Génica de las Plantas , Lotus/fisiología , Minociclina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Elementos de Respuesta , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética
2.
Plant J ; 105(6): 1507-1520, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33300204

RESUMEN

Legumes and nitrogen-fixing rhizobial bacteria establish root nodule symbiosis, which is orchestrated by several plant hormones. Exogenous addition of biologically active gibberellic acid (GA) is known to inhibit root nodule symbiosis. However, the precise role of GA has not been elucidated because of the trace amounts of these hormones in plants and the multiple functions of GAs. Here, we found that GA signaling acts as a key regulator in a long-distance negative-feedback system of root nodule symbiosis called autoregulation of nodulation (AON). GA biosynthesis is activated during nodule formation in and around the nodule vascular bundles, and bioactive GAs accumulate in the nodule. In addition, GA signaling induces expression of the symbiotic transcription factor NODULE INCEPTION (NIN) via a cis-acting region on the NIN promoter. Mutants with deletions of this cis-acting region have increased susceptibility to rhizobial infection and reduced GA-induced CLE-RS1 and CLE-RS2 expression, suggesting that the inhibitory effect of GAs occurs through AON. This is supported by the GA-insensitive phenotypes of an AON-defective mutant of HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) and a reciprocal grafting experiment. Thus, endogenous GAs induce NIN expression via its GA-responsive cis-acting region, and subsequently the GA-induced NIN activates the AON system to regulate nodule formation.


Asunto(s)
Giberelinas/farmacología , Lotus/efectos de los fármacos , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Simbiosis/efectos de los fármacos , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lotus/metabolismo , Lotus/fisiología , Proteínas de Plantas/fisiología , Nodulación de la Raíz de la Planta/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/fisiología , Factores de Transcripción/fisiología
3.
Plant Signal Behav ; 11(12): e1265723, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27977319

RESUMEN

Lotus japonicus THIC is expressed in all organs, and the encoded protein catalyzes thiamine biosynthesis. Loss of function produces chlorosis, a typical thiamine-deficiency phenotype, and mortality. To investigate thiamine's role in symbiosis, we focused on THI1, a thiamine-biosynthesis gene expressed in roots, nodules, and seeds. The thi1 mutant had green leaves, but formed small nodules and immature seeds. These phenotypes were rescued by THI1 complementation and by exogenous thiamine. Thus, THI1 is required for nodule enlargement and seed maturation. On the other hand, colonization by arbuscular mycorrhiza (AM) fungus Rhizophagus irregularis was not affected in the thi1 mutant or by exogenous thiamine. However, spores of R. irregularis stored more thiamine than the source (host plants), despite lacking thiamine biosynthesis genes. Therefore, disturbance of the thiamine supply would affect progeny phenotypes such as spore formation and hyphal growth. Further investigation will be required to elucidate thiamine's effect on AM.


Asunto(s)
Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis/fisiología , Tiamina/metabolismo , Lotus/metabolismo , Lotus/microbiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología
4.
Plant Physiol ; 172(3): 2033-2043, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702844

RESUMEN

Thiamine (vitamin B1) is essential for living organisms. Unlike animals, plants can synthesize thiamine. In Lotus japonicus, the expression of two thiamine biosynthesis genes, THI1 and THIC, was enhanced by inoculation with rhizobia but not by inoculation with arbuscular mycorrhizal fungi. THIC and THI2 (a THI1 paralog) were expressed in uninoculated leaves. THI2-knockdown plants and the transposon insertion mutant thiC had chlorotic leaves. This typical phenotype of thiamine deficiency was rescued by an exogenous supply of thiamine. In wild-type plants, THI1 was expressed mainly in roots and nodules, and the thi1 mutant had green leaves even in the absence of exogenous thiamine. THI1 was highly expressed in actively dividing cells of nodule primordia. The thi1 mutant had small nodules, and this phenotype was rescued by exogenous thiamine and by THI1 complementation. Exogenous thiamine increased nodule diameter, but the level of arbuscular mycorrhizal colonization was unaffected in the thi1 mutant or by exogenous thiamine. Expression of symbiotic marker genes was induced normally, implying that mainly nodule growth was delayed in the thi1 mutant. Furthermore, this mutant formed many immature seeds with reduced seed weight. These results indicate that thiamine biosynthesis mediated by THI1 enhances nodule enlargement and is required for seed development in L. japonicus.


Asunto(s)
Vías Biosintéticas/genética , Lotus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Tiamina/biosíntesis , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes de Plantas , Lotus/microbiología , Mutación/genética , Micorrizas/efectos de los fármacos , Micorrizas/metabolismo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/efectos de los fármacos , Plastidios/metabolismo , Rhizobium/efectos de los fármacos , Rhizobium/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Fracciones Subcelulares/metabolismo , Simbiosis , Tiamina/farmacología
5.
Plant Signal Behav ; 9(3): e28544, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24705023

RESUMEN

Arbuscular mycorrhizal symbiosis (AMS) and root nodule symbiosis (RNS) share several common symbiotic components, and many of the common symbiosis mutants block the entry of symbionts into the roots. We recently reported that CERBERUS (an E3 ubiquitin ligase) and NSP1 (a GRAS family transcription factor), required for RNS, also modulate AMS development in Lotus japonicus. The novel common symbiosis mutants, cerberus and nsp1, have low colonization of arbuscular mycorrhiza (AM) fungi, caused by a defect in internal hyphal elongation and by a decreased fungal entry into the roots, respectively. Here, we showed that CERBERUS was induced at the sites of symbiotic fungal or bacterial infection. NSP1 has been implicated in a strigolactone biosynthesis gene DWARF27 expression. Nevertheless, in nsp1, DWARF27 was induced by inoculation with AM fungi, implying the existence of a NSP1-independent regulatory mechanism of strigolactone biosynthesis during AMS establishment. These results support functional analysis of CERBERUS and NSP1, and also contribute to elucidation of common mechanisms in AMS and RNS.


Asunto(s)
Lotus/fisiología , Micorrizas/fisiología , Nódulos de las Raíces de las Plantas/fisiología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Lotus/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiosis/fisiología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
6.
Plant Physiol ; 146(4): 1687-96, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18258690

RESUMEN

Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals. Chloroplasts have two isozymes, copper/zinc SOD (Cu/ZnSOD) and iron SOD (FeSOD), encoded by nuclear genes. Because bryophytes are considered as the earliest land plants, they are one of the most interesting plant models for adaptation against oxidative stress. In a previous study, we found that the FeSOD gene was expressed under Cu-deficient conditions and repressed under high-Cu-supply conditions; on the other hand, the Cu/ZnSOD gene was induced by Cu in a moss, Barbula unguiculata. The expression of Cu/ZnSOD and FeSOD is coordinately regulated at the transcriptional level depending on metal bioavailability. Here, using transgenic moss plants, we determined that the GTACT motif is a negative cis-acting element of the moss FeSOD gene in response to Cu. Furthermore, we found that a plant-specific transcription factor, PpSBP2 (for SQUAMOSA promoter-binding protein), and its related proteins bound to the GTACT motif repressed the expression of the FeSOD gene. The moss FeSOD gene was negatively regulated by Cu in transgenic Nicotiana tabacum plants, and the Arabidopsis thaliana FeSOD gene promoter containing the GTACT motif was repressed by Cu. Our results suggested that molecular mechanisms of GTACT motif-dependent transcriptional suppression by Cu are conserved in land plants.


Asunto(s)
Briófitas/genética , Cobre/metabolismo , Superóxido Dismutasa/genética , Secuencia de Bases , Briófitas/enzimología , Cartilla de ADN , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...