Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5137, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050313

RESUMEN

Sensory processing in olfactory systems is organized across olfactory bulb glomeruli, wherein axons of peripheral sensory neurons expressing the same olfactory receptor co-terminate to transmit receptor-specific activity to central neurons. Understanding how receptors map to glomeruli is therefore critical to understanding olfaction. High-throughput spatial transcriptomics is a rapidly advancing field, but low-abundance olfactory receptor expression within glomeruli has previously precluded high-throughput mapping of receptors to glomeruli in the mouse. Here we combined sequential sectioning along the anteroposterior, dorsoventral, and mediolateral axes with target capture enrichment sequencing to overcome low-abundance target expression. This strategy allowed us to spatially map 86% of olfactory receptors across the olfactory bulb and uncover a relationship between OR sequence and glomerular position.


Asunto(s)
Bulbo Olfatorio , Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Axones/metabolismo , Ratones , Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/genética , Transcriptoma
2.
PLoS Genet ; 16(5): e1008255, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32392211

RESUMEN

mTOR, a serine/threonine protein kinase that is involved in a series of critical cellular processes, can be found in two functionally distinct complexes, mTORC1 and mTORC2. In contrast to mTORC1, little is known about the mechanisms that regulate mTORC2. Here we show that mTORC2 activity is reduced in mice with a hypomorphic mutation of the Ric-8B gene. Ric-8B is a highly conserved protein that acts as a non-canonical guanine nucleotide exchange factor (GEF) for heterotrimeric Gαs/olf type subunits. We found that Ric-8B hypomorph embryos are smaller than their wild type littermates, fail to close the neural tube in the cephalic region and die during mid-embryogenesis. Comparative transcriptome analysis revealed that signaling pathways involving GPCRs and G proteins are dysregulated in the Ric-8B mutant embryos. Interestingly, this analysis also revealed an unexpected impairment of the mTOR signaling pathway. Phosphorylation of Akt at Ser473 is downregulated in the Ric-8B mutant embryos, indicating a decreased activity of mTORC2. Knockdown of the endogenous Ric-8B gene in cultured cell lines leads to reduced phosphorylation levels of Akt (Ser473), further supporting the involvement of Ric-8B in mTORC2 activity. Our results reveal a crucial role for Ric-8B in development and provide novel insights into the signals that regulate mTORC2.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética
3.
Proc Natl Acad Sci U S A ; 117(6): 2957-2967, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31974307

RESUMEN

Mammalian odorant receptors are a diverse and rapidly evolving set of G protein-coupled receptors expressed in olfactory cilia membranes. Most odorant receptors show little to no cell surface expression in nonolfactory cells due to endoplasmic reticulum retention, which has slowed down biochemical studies. Here we provide evidence that structural instability and divergence from conserved residues of individual odorant receptors underlie intracellular retention using a combination of large-scale screening of odorant receptors cell surface expression in heterologous cells, point mutations, structural modeling, and machine learning techniques. We demonstrate the importance of conserved residues by synthesizing consensus odorant receptors that show high levels of cell surface expression similar to conventional G protein-coupled receptors. Furthermore, we associate in silico structural instability with poor cell surface expression using molecular dynamics simulations. We propose an enhanced evolutionary capacitance of olfactory sensory neurons that enable the functional expression of odorant receptors with cryptic mutations.


Asunto(s)
Receptores Odorantes/química , Animales , Línea Celular , Humanos , Ratones , Simulación de Dinámica Molecular , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/metabolismo , Estabilidad Proteica , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
4.
Methods Mol Biol ; 1820: 69-76, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29884938

RESUMEN

The mouse olfactory epithelium is composed of a heterogeneous population of olfactory sensory neurons, where each neuron expresses one single type of odorant receptor gene, out of a repertoire of ~1000 different genes. Fluorescent-activated cell sorting (FACS) is a powerful technique, which can be used to isolate a cellular subpopulation from a heterogeneous tissue. The sorted neurons can then be used in gene expression studies, or analyzed for the presence of different DNA epigenetic modification marks. Here we describe a method to separate a subpopulation of olfactory sensory neurons expressing the odorant receptor Olfr17. In this method, the main olfactory epithelium from transgenic Olfr17-IRES-GFP mice is dissociated into single cells, followed by separation of the GFP positive cells by FACS.


Asunto(s)
Citometría de Flujo/métodos , Mucosa Olfatoria/citología , Receptores Odorantes , Células Receptoras Sensoriales/citología , Animales , Ratones , Ratones Transgénicos , Mucosa Olfatoria/metabolismo , Células Receptoras Sensoriales/metabolismo
5.
J Neurosci ; 37(50): 12202-12213, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29118104

RESUMEN

The olfactory system can discriminate a vast number of odorants. This ability derives from the existence of a large family of odorant receptors expressed in the cilia of the olfactory sensory neurons. Odorant receptors signal through the olfactory-specific G-protein subunit, Gαolf. Ric-8b, a guanine nucleotide exchange factor, interacts with Gαolf and can amplify odorant receptor signal transduction in vitro To explore the function of Ric-8b in vivo, we generated a tissue specific knock-out mouse by crossing OMP-Cre transgenic mice to Ric-8b floxed mice. We found that olfactory-specific Ric-8b knock-out mice of mixed sex do not express the Gαolf protein in the olfactory epithelium. We also found that in these mice, the mature olfactory sensory neuron layer is reduced, and that olfactory sensory neurons show increased rate of cell death compared with wild-type mice. Finally, behavioral tests showed that the olfactory-specific Ric-8b knock-out mice show an impaired sense of smell, even though their motivation and mobility behaviors remain normal.SIGNIFICANCE STATEMENT Ric-8b is a guanine nucleotide exchange factor (GEF) expressed in the olfactory epithelium and in the striatum. Ric-8b interacts with the olfactory Gαolf subunit, and can amplify odorant signaling through odorant receptors in vitro However, the functional significance of this GEF in the olfactory neurons in vivo remains unknown. We report that deletion of Ric-8b in olfactory sensory neurons prevents stable expression of Gαolf. In addition, we demonstrate that olfactory neurons lacking Ric-8b (and consequently Gαolf) are more susceptible to cell death. Ric-8b conditional knock-out mice display impaired olfactory guided behavior. Our results reveal that Ric-8b is essential for olfactory function, and suggest that it may also be essential for Gαolf-dependent functions in the brain.


Asunto(s)
Conducta Apetitiva/fisiología , Reacción de Prevención/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas Receptoras Olfatorias/fisiología , Animales , Animales Lactantes , Ácido Butírico , Recuento de Células , Muerte Celular , Cruzamientos Genéticos , Femenino , Alimentos , Subunidades alfa de la Proteína de Unión al GTP/deficiencia , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Odorantes , Mucosa Olfatoria/patología , Receptores Odorantes/fisiología
6.
Mol Pharmacol ; 90(5): 633-639, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27587538

RESUMEN

Odorant receptors (ORs) belong to a large gene family of rhodopsin-like G protein-coupled receptors (GPCRs). The mouse OR gene family is composed of ∼1000 OR genes, and the human OR gene family is composed of ∼400 OR genes. The OR genes are spread throughout the genome, and can be found in clusters or as solitary genes in almost all chromosomes. These chemosensory GPCRs are expressed in highly specialized cells, the olfactory sensory neurons of the nose. Each one of these neurons expresses a single OR gene out of the complete repertoire of genes. In addition, only one of the two homologous alleles of the chosen OR gene, the maternal or the paternal, is expressed per neuron. Here we review recent findings that help to elucidate the mechanisms underlying monogenic and monoallelic expression of OR genes.


Asunto(s)
Alelos , Regulación de la Expresión Génica , Receptores Odorantes/genética , Animales , Humanos , Modelos Genéticos , Receptores Odorantes/metabolismo
7.
Bioarchitecture ; 4(4-5): 160-3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25714005

RESUMEN

Odorants are discriminated by hundreds of odorant receptor (OR) genes, which are dispersed throughout the mammalian genome. The OR genes are expressed in a highly specialized type of cell, the olfactory sensory neuron. Each one of these neurons expresses one of the 2 alleles from one single OR gene type. The mechanisms underlying OR gene expression are unclear. Here we describe recent work demonstrating that the olfactory sensory neuron shows a particular nuclear architecture, and that the genomic OR loci are colocalized in silencing heterochromatin compartments within the nucleus. These discoveries highlight the important role played by epigenetic modifications and nuclear genome organization in the regulation of OR gene expression.


Asunto(s)
Alelos , Núcleo Celular/ultraestructura , Regulación de la Expresión Génica/genética , Heterocromatina/metabolismo , Neuronas Receptoras Olfatorias/citología , Receptores Odorantes/genética , Animales
8.
PLoS One ; 6(12): e29065, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216168

RESUMEN

In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions.We conducted a comparative analysis of promoter regions of 39 mouse V1R genes and found motifs that are common to a large number of promoters. We then searched mouse OR promoter regions for motifs that resemble the ones found in the V1R promoters. We identified motifs that are present in both the V1R and OR promoter regions. Some of these motifs correspond to the known O/E like binding sites while others resemble binding sites for transcriptional repressors. We show that one of these motifs specifically interacts with proteins extracted from both nuclei from olfactory and vomeronasal neurons. Our study is the first to identify motifs that resemble binding sites for repressors in the promoters of OR and V1R genes. Analysis of these motifs and of the proteins that bind to these motifs should reveal important aspects of the mechanisms of OR/V1R gene regulation.


Asunto(s)
Regiones Promotoras Genéticas , Receptores Odorantes/genética , Órgano Vomeronasal/metabolismo , Secuencia de Aminoácidos , Animales , ADN Complementario , Expresión Génica , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...