Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Drug Target ; : 1-15, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38404239

RESUMEN

The term periodontal disease is used to define diseases characterised by inflammation and regeneration of the gums, cementum, supporting bone, and periodontal ligament. The conventional treatment involves the combination of scaling, root planning, and surgical approaches which are invasive and can pose certain challenges. Intrapocket administration of nanofibers can be used for overcoming challenges which can help in speeding up the wound repair process and can also be used to promote osteogenesis. To help make drug delivery more effective, nanofibers are an interesting solution. Nanofibers are nanosized 3D structures that can fill the pockets and have excellent mucoadhesion which prolongs their retention time on the target site. Moreover, their structure mimics the natural extracellular matrix which enables nanomaterials to sense local biological conditions and start cellular-level reprogramming to produce the necessary therapeutic efficacy. In this review, the significance of intrapocket administration of nanofibers using recent research for the management of periodontitis has been discussed in detail. Furthermore, we have discussed polymers used for the preparation of nanofibers, nanofiber production methods, and the patents associated with these developments. This comprehensive compilation of data serves as a valuable resource, consolidating recent developments in nanofiber applications for periodontitis management into one accessible platform.

2.
Curr Drug Deliv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38310439

RESUMEN

In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.

3.
Recent Pat Nanotechnol ; 18(2): 305-320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38197418

RESUMEN

Neurological disorders (ND) have affected a major part of our society and have been a challenge for medical and biosciences for decades. However, many of these disorders haven't responded well to currently established treatment approaches. The fact that many active pharmaceutical ingredients can't get to their specified action site inside the body is one of the main reasons for this failure. Extracellular and intracellular central nervous system (CNS) barriers prevent the transfer of drugs from the blood circulation to the intended location of the action. Utilizing nanosized drug delivery technologies is one possible way to overcome these obstacles. These nano-drug carriers outperform conventional dosage forms in many areas, including good drug encapsulation capacity, targeted drug delivery, less toxicity, and enhanced therapeutic impact. As a result, nano-neuroscience is growing to be an intriguing area of research and a bright alternative approach for delivering medicines to their intended action site for treating different neurological and psychiatric problems. In this review, we have included a short overview of the pathophysiology of neurological diseases, a detailed discussion about the significance of nanocarriers in NDs, and a focus on its recent advances. Finally, we highlighted the patented technologies and market trends, including the predictive analysis for the years 2021-2028.


Asunto(s)
Medicamentos a Granel , Manejo de la Enfermedad , Sistema Nervioso Central , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Patentes como Asunto
4.
Pharm Dev Technol ; 29(1): 25-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014878

RESUMEN

BACKGROUND: Emulgels, hybrid formulations of emulsions and gels, offer distinct benefits viz. extended release, enhanced bioavailability, and targeted drug delivery to inflamed joints, thereby minimizing systemic side effects, and maximizing therapeutic efficacy in targeting the diseases. Oral medications and topical creams have limitations viz. limited permeation, efficacy, and side effects. Arthritis is a prevalent chronic inflammatory disorder affecting a substantial global population of about 350 million necessitating the exploration of innovative and effective treatment approaches. Inflammation of one or more joints in the body is referred to generally as arthritis, associated with joint discomfort, edema, stiffness, and decreased motion in the joints. MAIN PART: Emulgels further improve drug solubility and penetration into the affected tissues, augmenting the potential for disease-modifying effects. This review article comprehensively examines recent research for the potential of emulgels (micro- and nanoemulgels) as a potential therapeutic approach for arthritis management, thus showcasing their promising potential in precise treatment regimens. Despite the considerable progress in emulgel-based arthritis therapies, the review emphasizes the need for additional research and translation to clinical trials, thus ascertaining their long-term safety, efficacy, and cost-effectiveness compared to conventional treatments. CONCLUSION: With ongoing advancements in drug delivery, emulgels present an exciting frontier in arthritis-associated conditions, with the potential to revolutionize arthritis treatment and significantly enhance patient life's quality.


Asunto(s)
Artritis , Sistemas de Liberación de Medicamentos , Humanos , Artritis/tratamiento farmacológico , Geles
5.
Mol Pharm ; 20(11): 5345-5358, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870420

RESUMEN

An endogenous transporter protein called albumin interacts with the Fc receptor to provide it with multiple substrate-binding domains, cell membrane receptor activation, and an extended circulating half-life. Albumin has the remarkable ability to bind with receptors viz. secreted protein acidic and rich in cysteine (SPARC) and scavenger protein-A (SR-A) that are overexpressed during rheumatoid arthritis (RA), enabling active targeting of the disease site instead of requiring specialized substrates to be added to the nanocarrier. RA, a chronic autoimmune illness, is characterized by the presence of a severe inflammatory response. RA patients have low serum albumin concentration, which signifies the high uptake of albumin at the inflammatory sites, giving a rationale to use albumin as a drug carrier for RA therapy. Albumin has the capacity for both passive and active targeting. It is an abundantly available protein in the bloodstream showing excellent cellular compatibility, degradability in biological tissues, nonantigenicity, and safety. There are three strategies of albumin mediated drug delivery as encapsulating therapeutics in albumin nanoparticles, chemically conjugating drugs with functional proteins, and albumin itself which is used as a targeting ligand to deliver drugs specifically to cells or tissues that express albumin-binding receptors. In the current review, an attempt has been made to highlight the significant evidence of albumin as a drug delivery carrier for the safe and effective management of RA. Evidence has been provided in the form of recent research advances, clinical trials, and patents. Additionally, this review will outline the prospective for the potential utilization of albumin as a drug vehicle for RA and suggest possible future avenues to provide the perspective for subsequent studies.


Asunto(s)
Artritis Reumatoide , Portadores de Fármacos , Humanos , Portadores de Fármacos/química , Osteonectina/metabolismo , Estudios Prospectivos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Albúminas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-37849227

RESUMEN

The prevalence of thyroid cancer (TC) is more common in women and is up to 43% in patients aged between 45-65 years. The battle against TC is hampered by the lack of effective diagnostic and therapeutic approaches. The effectiveness of surgical procedures, such as thyroidectomy and nutraceutical treatments, are accompanied by several difficulties and still require further research. Alternatively, the DNA-damaging traditional model of chemotherapy is linked to poor solubility, untoward systemic effects, and associated cytotoxicity, instituting an urgent need to establish a specialized, factual, and reliable delivery tool. In order to overcome the limitations of conventional delivery systems, nanotechnology-based delivery tools have shown the potential of articulating endless inherent implementations. The probable benefits of emerging nanotechnology-based diagnostic techniques include rapid screening and early illness diagnosis, which draws investigators to investigate and assess the possibility of this treatment for TC. Subsequently, organic (e.g., liposomes, polymer-based, and dendrimers) and inorganic (e.g., gold, carbon-based, mesoporous silica, magnetic, and quantum dots) NPs and hybrids thereof (liposome-silica, chitosan-carbon, and cell membrane-coated) have been projected for TC biomarker screening, therapy, and detection, providing better outcomes than traditional diagnostic and treatment techniques. Therefore, this review aims to offer a broad perspective on nanoplatform in TC, accompanied by present and potential future treatment options and screening techniques. The goal of cancer therapy has traditionally been to "search a thorn in a hayloft"; therefore, this article raises the possibility of treating TC using nano-oncotherapeutics, which might be useful clinically and will encourage future researchers to explore this tool's potential and drawbacks.

7.
Diagn Microbiol Infect Dis ; 107(2): 116024, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37481798

RESUMEN

Mpox (formerly known as monkeypox) is an orthopoxvirus based zoonotic infection that induces a smallpox-like human illness. Since the Democratic Republic of the Congo reported the first human case of mpox in 1970, the disease has proliferated to other areas of Africa, predominantly the West, and Central, with instances recently confirmed outside of Africa. Reports of cases of mpox in 2022 have brought into light its re-emergence. Even though the smallpox vaccine protects against the mpox virus, new nonimmune generations contribute to the rising prevalence of the cases. People are coming into contact with potential hosts as a result of environmental factors, raising the probability of animal-to-human transmission. Mpox poses a more serious threat to previously unaffected nations as it is showing up in data provided by governmental bodies due to increased transmission risk brought on by globalization, armed conflict, and environmental factors. In this article, we have extensively covered the virology, etiology, and epidemiology of the disease. Various gene studies, recent drugs studied, and clinical trials pertaining to mpox have been incorporated in this review. Additionally, we have compiled a comprehensive analysis of various systematic reviews and meta-analyses concerning pregnancies complicated by mpox, retrospective studies examining mpox and HIV-coinfection, mpox in conjuction with SARS-CoV-2, and HIV coinfection, as well as case studies exploring the implications of mpox manifestations in conjunction with syphilis, gonorrhoea, myocarditis, and neuroinflammatory implications.


Asunto(s)
COVID-19 , Mpox , Animales , Femenino , Embarazo , Humanos , Mpox/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Zoonosis/epidemiología
8.
Mikrochim Acta ; 190(8): 301, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464230

RESUMEN

Microneedle (MN) technology plays a significant role in bioengineering as it allows for minimally invasive exposure to the skin via the non-invasive procedure, increased drug permeability, and improved biological molecule detectability in the epidermal layers, all while improving therapeutic safety and effectiveness. However, MNs have several significant drawbacks, including difficulty scaling up, variability in drug delivery pattern regarding the skin's external environment, blockage of dermal tissues, induction of inflammatory response at the administration site, and limitation of dosing based on the molecular weight of drug and size. Despite these drawbacks, MNs have emerged as a special transdermal theranostics instrument in clinical research to assess physiological parameters. Bioimaging technology relies on microneedles that can measure particular analytes in the extracellular fluid effectively by crossing the stratum corneum, making them "a unique tool in diagnostics detection and therapeutic application inside the body." This review article discusses the recent advances in the applications especially related to the diagnostics and toxicity challenges of microneedles. In addition, this review article discusses the clinical state and commercial accessibility of microneedle technology-based devices in order to provide new information to scientists and researchers.


Asunto(s)
Expediciones , Piel , Administración Cutánea , Preparaciones Farmacéuticas , Epidermis
9.
AAPS PharmSciTech ; 24(6): 151, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438613

RESUMEN

Since earlier times, dermatological remedies have been utilized to treat diseases associated with pain, irritation, and skin conditions. Compared to other routes of drug delivery, topical delivery of drugs offers several benefits. Scientists are investigating different alterations in dosage forms in addition to existing topical formulations such as ointments, gels, creams, lotions, and ointments to significantly improve the permeation of drugs and enhance the pharmacological efficacy of medications that are poorly absorbed via the skin. Conventional formulations have a plethora of problems viz. poor absorption, no target specificity, low spreadability, and inadequate bioavailability which leads the researchers toward developing novel formulations like nanoemulsions. The nanoemulsion can enhance the gradient in concentration and thermodynamic movement toward the epidermis and enhance the penetration of its constituents. However, due to its difficult application, nanoemulsion's lower viscosity limited its use in transdermal delivery. Thus, the development of nanoemulsion-based hydrogels has shown to be a successful strategy for removing obstacles from existing drug formulations. The simple application, expedient spreadability, non-stickiness, safety, and effectiveness of nanoemulsion-based hydrogel have led to substantial growth in their research in recent years. This review gives a brief idea about the prevalence of skin diseases, skin as an obstacle for drug delivery, and recent research insights to combat these obstacles. The work highlights the mechanism of drug release via nanoemulsion, hydrogels, and nanoemulsion-based hydrogels with reference to recent research on hydrophobic and hydrophilic drugs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Pomadas , Difusión , Disponibilidad Biológica
10.
Polim Med ; 53(1): 59-68, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36929642

RESUMEN

The introduction of tablet dosage forms has brought a revolution in the pharmaceutical drug delivery system. Different forms of tablets have been developed based on the target site, the onset of action, and therapeutic drug delivery methods. Fast-disintegrating tablets (FDTs) are the most promising pharmaceutical dosage form, especially for pediatric and geriatric patients having difficulty swallowing. The key feature of FDTs is quick drug release soon after their administration through the oral cavity. With innovations in the formulation of FDTs, the demand for excipients with better functionalities, particularly in terms of flow and compression characteristics, has increased. Co-processed excipients are a mixture of 2 or more conventional excipients that provides significant benefits over the individual excipients while minimizing their shortcomings. Such multifunctional co-processed excipients minimize the number of excipients that are to be incorporated into tablets during the manufacturing process. The present review discusses FTDs formulated from co-processed excipients, their manufacturing techniques, and the latest research, patents and commercially available co-processed FDTs.


Asunto(s)
Química Farmacéutica , Excipientes , Humanos , Niño , Anciano , Química Farmacéutica/métodos , Liberación de Fármacos , Comprimidos , Solubilidad , Composición de Medicamentos/métodos
11.
Recent Pat Nanotechnol ; 17(4): 284-306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35616677

RESUMEN

The advent of technology provides a solution to various drug delivery-related problems by undertaking the development of a better drug delivery system, i.e., nano-sized drug delivery systems as they have shown huge prospects for effective delivery of drugs in the body. Nanostructured lipid carriers (NLCs) are such type of novel drug delivery system in which lipids of both solid and liquid types are used as a core for the disorganized matrix, which prevents the solid lipid crystallization and increases drug payload. They are generally composed of solid and liquid lipids, emulsifiers, drugs, and other various additives, which are selected based on purity, chemical stability, the concentration of materials required, compatibility, biodegradability, processing type, cost, and their regulatory status. Placing bioactives into nanostructured lipid carriers (NLCs) has enhanced pharmacokinetic characteristics by increasing therapeutic functionality and prolonging release from these carrier systems. In our opinion, the search involves two steps viz. fabrication strategies, production methods, and the impact of various types of substances on them, as well as the release mechanism and targeting modalities. In addition to other applications, the use of NLCs in gene therapy has marked a promising path for new and better drug delivery systems. Further development of various dosage forms using NLCs, like NLC based hydrogels, is being done for improving the overall aesthetic properties, leading to the desired therapeutic effect of the incorporated active. This review highlights several elements of NLCs, such as structural model and types, excipients utilized, factors affecting NLC production, preparation techniques, characterization, current applications, patents, challenges, and opportunities.


Asunto(s)
Portadores de Fármacos , Nanoestructuras , Portadores de Fármacos/química , Lípidos/química , Patentes como Asunto , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Tamaño de la Partícula
12.
Drug Deliv Transl Res ; 13(4): 994-1011, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36515863

RESUMEN

Rheumatoid arthritis is a progressive, chronic, immunological, and inflammatory disorder that is distinguished by joint inflammation, joint tenderness, and synovial joint destruction. The study aimed to fabricate sulfasalazine-loaded solid lipid nanoparticle (SLN)-based gels for rheumatoid arthritis management. The SLNs were fabricated with the melt emulsification technique by employing central composite design (CCD) for SLNs optimization. The optimized formulation of SLNs (FF-1) showed particle size and drug entrapment efficiency of 117.25 nm ± 1.67 and 94.05% ± 1.05, respectively. To scrutinize the outcome of the independent variable on responses; model graphs and the polynomial equation obtained from the Design-Expert were used. The surface morphology studies of SLNs revealed a smooth surface with a slightly asymmetric shape. In vitro drug release of the optimized formulation (FF1) had shown a maximum release of up to ~ 91.89% ± 2.12 over 24 h. The optimized FF1 formulation was subsequently gelled using 1% w/v Carbopol 934 and subjected to ex vivo permeation that displayed 8.01 mg/cm2 ± 0.24 and 7.49 mg/cm2 ± 0.86 amount of drug permeated up to 24 h and 10 h from SLNs gel and plain gel, respectively. In vivo studies manifested a considerable reduction in the paw thickness (*p < 0.0001) and an arthritic score (*p < 0.0001) of the sulfasalazine SLN gel as compared to plain gel. Further, pro-inflammatory cytokines, viz. TNF-α, IL-1, and IL-6 levels, were significantly inhibited (p < 0.0001) by sulfasalazine SLN-based gel that exhibited substantial anti-inflammatory effects. In conclusion, sulfasalazine-loaded SLN-based gel showed sustained release of drug for up to 24 h and can be considered suitable as a topical application for rheumatoid arthritis management.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Humanos , Hidrogeles , Sulfasalazina , Absorción Cutánea , Artritis Reumatoide/tratamiento farmacológico , Tamaño de la Partícula , Portadores de Fármacos
13.
Pharm Pat Anal ; 12(1): 19-25, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36382542

RESUMEN

Co-processing involves the incorporation of one excipients into the particle structure of other excipients to overcome the deficiencies of each excipients. The current patent describes the co-processing of microcrystalline cellulose and mannitol via fluid bed agglomeration with an aim to limit the use of lubricant in tablet composition. The co-processed excipients blend was compared with the physical blend of excipients and characterized for scanning electron microscopy, disintegration and hardness. The average particle size of co-processed excipients was less than 0.55 mm, characterized by large individual lactose-coated particles whereas, the physical blend particles are uncoated and irregular in shape. Tablets made from both physical blend and co-processed excipients were compared. As per the hardness and disintegration studies, with increase in mixing time of excipients both hardness and disintegration time decreases.


Asunto(s)
Excipientes , Lactosa , Excipientes/química , Composición de Medicamentos , Comprimidos/química , Dureza , Lactosa/química
14.
EPMA J ; 13(4): 561-580, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36505888

RESUMEN

In the current era of medical revolution, genomic testing has guided the healthcare fraternity to develop predictive, preventive, and personalized medicine. Predictive screening involves sequencing a whole genome to comprehensively deliver patient care via enhanced diagnostic sensitivity and specific therapeutic targeting. The best example is the application of whole-exome sequencing when identifying aberrant fetuses with healthy karyotypes and chromosomal microarray analysis in complicated pregnancies. To fit into today's clinical practice needs, experimental system biology like genomic technologies, and system biology viz., the use of artificial intelligence and machine learning is required to be attuned to the development of preventive and personalized medicine. As diagnostic techniques are advancing, the selection of medical intervention can gradually be influenced by a person's genetic composition or the cellular profiling of the affected tissue. Clinical genetic practitioners can learn a lot about several conditions from their distinct facial traits. Current research indicates that in terms of diagnosing syndromes, facial analysis techniques are on par with those of qualified therapists. Employing deep learning and computer vision techniques, the face image assessment software DeepGestalt measures resemblances to numerous of disorders. Biomarkers are essential for diagnostic, prognostic, and selection systems for developing personalized medicine viz. DNA from chromosome 21 is counted in prenatal blood as part of the Down's syndrome biomarker screening. This review is based on a detailed analysis of the scientific literature via a vigilant approach to highlight the applicability of predictive diagnostics for the development of preventive, targeted, personalized medicine for clinical application in the framework of predictive, preventive, and personalized medicine (PPPM/3 PM). Additionally, targeted prevention has also been elaborated in terms of gene-environment interactions and next-generation DNA sequencing. The application of 3 PM has been highlighted by an in-depth analysis of cancer and cardiovascular diseases. The real-time challenges of genome sequencing and personalized medicine have also been discussed.

15.
Drug Deliv Transl Res ; 12(7): 1719-1737, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582029

RESUMEN

The research work was driven to develop, optimize, and characterize novel nanostructured liquid crystalline particles as carriers for the ocular delivery of vancomycin. The formulations were developed by fragmenting the cubic crystalline phase of glycerol monooleate, water, and poloxamer 407. A four-factor, three-level Taguchi statistical experimental design was constructed to optimize the formulation. Formulations exhibited internal-cubic structure of the vesicles with particle size in the range of 51.11 ± 0.96 nm to 158.73 ± 0.46 nm and negative zeta potential. Ex vivo transcorneal permeation studies demonstrated that the optimized cubosomes had a 2.4-fold increase in apparent permeability co-efficient as compared to vancomycin solution, whereas in vivo studies in rabbits demonstrated that the severity of keratitis was considerably lowered on day 3 with optimized cubosomes. Ocular pharmacokinetic studies evaluated the level of drug in aqueous humor, and results revealed that the time to peak concentration (Tmax) of vancomycin-loaded cubosomal formulation was about 1.9-fold higher and mean residence time was 2.2-fold greater than vancomycin solution. Furthermore, histological examination revealed that the corneal layers displayed well-maintained morphology without any stromal swelling, consequently indicating the safety of formulation. It could be concluded that the developed nanostructured liquid crystalline particles of vancomycin demonstrated improved pre-ocular residence time, increased permeability, reduced dosing frequency, controlled drug release, and reduced systemic side-effects. Results manifested that the developed vancomycin-loaded cubosomes could be a promising novel ocular carrier and an ideal substitute for conventional eye drops for the management of bacterial-keratitis.


Asunto(s)
Queratitis , Cristales Líquidos , Animales , Córnea , Portadores de Fármacos/farmacología , Queratitis/tratamiento farmacológico , Tamaño de la Partícula , Conejos , Vancomicina
16.
J Adv Pharm Technol Res ; 12(4): 356-361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820309

RESUMEN

Tobramycin remains the anchor drug for bacterial keratitis treatment and management; however, unlike other aminoglycosides, it does not pass through the gastrointestinal tract. The aim of the current investigation was to formulate tobramycin-loaded nanostructured liquid crystalline particles as an ophthalmic drug delivery system to ameliorate its preocular residence duration and ophthalmic bioavailability. Tobramycin cubosomes were fabricated by liquid-lipid monoolein, water, and poloxamer 407 as a stabilizer. Corneal penetration studies exhibited that the apparent permeation coefficient of tobramycin cubosomes was nearly 3.6-fold greater than marketed tobramycin eye drops. Ocular in vivo analysis performed in rabbits' eyes manifested that the intensity of bacterial keratitis was reduced on day 3, and on day 5, the manifestations were considerably mitigated with tobramycin cubosomes as compared to marked eye drops. Pharmacokinetic study of rabbit aqueous humor demonstrated that the area under curve and the peak concentration of optimized cubosomes were 3.1-fold and 3.3-fold, respectively, which was significantly higher than marketed eye drops. Moreover, histopathological studies illustrated the existence of normal ocular structures, thus indicating that there was no damage to the corneal epithelium or stromal layer. Consequently, the results acquired demonstrated that tobramycin-loaded cubosomal formulation could be a propitious lipid-based nanodelivery system that would enhance retention time and corneal permeability contrast to commercial eye drops.

17.
Adv Pharm Bull ; 11(3): 490-496, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34513623

RESUMEN

Purpose: The aim of the present investigation was to formulate protein nanoparticles (PNPs) loaded suppositories for colon targeting of metronidazole (MZ), to achieve sustain release effect. Methods: PNPs were formulated via desolvation technique by utilizing 23 factorial design which results into eight formulations. The synthesized PNPs were characterized for different physicochemical and in vitro parameters viz. particle size, surface morphology, entrapment efficiency and zeta potential, drug- excipients compatibility studies. Results: The formulated PNPs were found to be spherical in shape and have an average size in the range of 300.7 nm to 504.8 nm. Based on the results obtained, F7 was found to be the optimized formulation that was loaded into the suppository base. Furthermore, suppositories were also characterized for several parameters like content uniformity, weight variation and liquefaction time. Conclusion: Resultant, suppositories were free from pits, fissures and cracks. The in-vitro release data of MZ-PNPs loaded suppositories were compared with the suppositories loaded with active ingredient only i.e. MZ. Screening against Pheretima posthuma was also conducted. The results of in vitro drug release testing proved that protein nanoparticle loaded suppositories is a better approach, compared to pure MZ loaded suppositories. Release kinetic study concluded that the formulation follows Higuchi's equation i.e. having a biphasic release pattern. The efficiency of the formulated dosage form was evaluated using Indian earthworms, P. posthuma.

18.
J Pharm Anal ; 10(1): 1-12, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32123595

RESUMEN

Nanodiamonds are novel nanosized carbon building blocks possessing varied fascinating mechanical, chemical, optical and biological properties, making them significant active moiety carriers for biomedical application. These are known as the most 'captivating' crystals attributed to their chemical inertness and unique properties posing them useful for variety of applications in biomedical era. Alongside, it becomes increasingly important to find, ascertain and circumvent the negative aspects associated with nanodiamonds. Surface modification or functionalization with biological molecules plays a significant role in managing the toxic behavior since nanodiamonds have tailorable surface chemistry. To take advantage of nanodiamond potential in drug delivery, focus has to be laid on its purity, surface chemistry and other considerations which may directly or indirectly affect drug adsorption on nanodiamond and drug release in biological environment. This review emphasizes on the basic properties, synthesis techniques, surface modification techniques, toxicity issues and biomedical applications of nanodiamonds. For the development of nanodiamonds as an effective dosage form, researchers are still engaged in the in-depth study of nanodiamonds and their effect on life interfaces.

19.
Artículo en Inglés | MEDLINE | ID: mdl-31612834

RESUMEN

INTRODUCTION: The main purpose of the research was to develop, optimize and characterize tobramycin sulphate loaded chitosan nanoparticles based gel in order to ameliorate its therapeutic efficacy, precorneal residence time, stability, targeting and to provide controlled release of the drug. METHODS: Box-Behnken design was used to optimize formulation by 3-factors (chitosan, STPP and tween 80) and 3-levels. Developed formulation was subjected for characterizations such as shape and surface morphology, zeta potential, particle size, in vitro drug release studies, entrapment efficiency of drug, visual inspection, pH, viscosity, spreadability, drug content, ex vivo transcorneal permeation studies, ocular tolerance test, antimicrobial studies, isotonicity evaluation and histopathology studies. RESULTS: Based on the evaluation parameters, the optimized formulation showed a particle size of 43.85 ± 0.86 nm and entrapment efficiency 91.56% ± 1.04, PDI 0.254. Cumulative in vitro drug release was up to 92.21% ± 1.71 for 12 hours and drug content was found between 95.36% ± 1.25 to 98.8% ± 1.34. TEM analysis unfolded spherical shape of nanoparticles. TS loaded nanoparticulate gel exhibited significantly higher transcorneal permeation as well as bioadhesion when compared with marketed formulation. Ocular tolerance was evaluated by HET-CAM test and formulation was non-irritant and well-tolerated. Histopathology studies revealed that there was no evidence of damage to the normal structure of the goat cornea. As per ICH guidelines, stability studies were conducted and were subjected for 6 months. CONCLUSION: Results revealed that the developed formulation could be an ideal substitute for conventional eye drops for the treatment of bacterial keratitis.


Asunto(s)
Quitosano/química , Córnea/efectos de los fármacos , Geles/química , Nanopartículas/química , Tobramicina/farmacocinética , Animales , Calibración , Embrión de Pollo , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Estabilidad de Medicamentos , Excipientes/química , Geles/farmacocinética , Cabras , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Tobramicina/administración & dosificación , Tobramicina/farmacología , Pruebas de Toxicidad Aguda/métodos
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-823978

RESUMEN

Nanodiamonds are novel nanosized carbon building blocks possessing varied fascinating mechanical, chemical, optical and biological properties, making them significant active moiety carriers for biomedical application. These are known as the most'captivating' crystals attributed to their chemical inertness and unique properties posing them useful for variety of applications in biomedical era. Alongside, it becomes increasingly important to find, ascertain and circumvent the negative aspects associated with nano-diamonds. Surface modification or functionalization with biological molecules plays a significant role in managing the toxic behavior since nanodiamonds have tailorable surface chemistry. To take advantage of nanodiamond potential in drug delivery, focus has to be laid on its purity, surface chemistry and other considerations which may directly or indirectly affect drug adsorption on nanodiamond and drug release in biological environment. This review emphasizes on the basic properties, synthesis techniques, surface modification techniques, toxicity issues and biomedical applications of nanodiamonds. For the devel-opment of nanodiamonds as an effective dosage form, researchers are still engaged in the in-depth study of nanodiamonds and their effect on life interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...