Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1340048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327516

RESUMEN

Recent advances in research suggest that aging has a controllable chronic inflammatory disease aspect. Aging systemic T cells, which secrete pro-inflammatory factors, affect surrounding somatic cells, and accelerate the aging process through chronic inflammation, have attracted attention as potential therapeutic targets in aging. On the other hand, there are few reports on the aging of the intestinal immune system, which differs from the systemic immune system in many ways. In the current study, we investigated the age-related changes in the intestinal immune system, particularly in T cells. The most significant changes were observed in the CD4+ T cells in the small intestinal IEL, with a marked increase in this fraction in old mice and reduced expression of CD27 and CD28, which are characteristic of aging systemic T cells. The proliferative capacity of aging IEL CD4+ T cells was significantly more reduced than that of aging systemic T cells. Transcriptome analysis showed that the expression of inflammatory cytokines was not upregulated, whereas Cd8α, NK receptors, and Granzymes were upregulated in aging IEL CD4+ T cells. Functional analysis showed that aging IEL T cells had a higher cytotoxic function against intestinal tumor organoids in vitro than young IEL T cells. scRNAseq revealed that splenic T cells show a transition from naïve to memory T cells, whereas intestinal T cells show the emergence of a CD8αα+CD4+ T cell fraction in aged mice, which is rarely seen in young cells. Further analysis of the aging IEL CD4+ T cells showed that two unique subsets are increased that are distinct from the systemic CD4+ T cells. Subset 1 has a pro-inflammatory component, with expression of IFNγ and upregulation of NFkB signaling pathways. Subset 2 does not express IFNγ, but upregulates inhibitory molecules and nIEL markers. Expression of granzymes and Cd8a was common to both. These fractions were in opposite positions in the clustering by UMAP and had different TCR repertoires. They may be involved in the suppression of intestinal aging and longevity through anti-tumor immunity, elimination of senescent cells and stressed cells in the aging environment. This finding could be a breakthrough in aging research.


Asunto(s)
Linfocitos Intraepiteliales , Ratones , Animales , Linfocitos T CD4-Positivos , Granzimas , Subgrupos de Linfocitos T , Análisis de la Célula Individual
2.
Biochem Biophys Res Commun ; 647: 72-79, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36731336

RESUMEN

Apelin (APL), an endogenous ligand for APJ, has been reported to be upregulated in a murine model of acute colitis induced by sodium dextran sulfate, as well as inflammatory bowel diseases (IBD) in humans. However, the mechanisms and functions of APL/APJ axis in the pathogenesis of IBD are unclear. We herein analyzed CD4+ T cells to determine the functions of APL in a murine model of chronic colitis induced in Rag deficient mice (Rag-/-). In colonic tissues of wild-type mice (WT), we found that APL was expressed especially in the lamina propria lymphocytes, where CD4+ T cells are dominant, rather than the epithelial cells. Unexpectedly, the APL expression was rather downregulated in the colonic tissue of the chronic colitis group compared to the control groups (Rag-/- before colitis induction and WT). The APL expression was downregulated when naïve T cells were differentiated into effecter T cells. A lack of APL resulted in decreased naïve T cells and increased effecter T cells in secondary lymphoid organs. A synthetic APL peptide, [Pyr1]-APL-13, increased IL-10 and decreased IFN-γ productions by effecter T cells. Administration of [Pyr1]-APL-13 improved survival rate in association with lessened colitis severity and decreased pro-inflammatory cytokine production. This is the first report showing immunological function of APL specifically on T cells, and these results indicate that APL/APJ axis may be a novel therapeutic target for IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Humanos , Animales , Linfocitos T/metabolismo , Apelina/metabolismo , Modelos Animales de Enfermedad , Colitis/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Sulfato de Dextran , Ratones Endogámicos C57BL , Linfocitos T CD4-Positivos
3.
Biochem Biophys Res Commun ; 628: 147-154, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36087511

RESUMEN

Expression of mucin MUC2, a component of the colonic mucus layer, plays a crucial role in intestinal homeostasis. Here, we describe a new regulator of MUC2 expression, the deubiquitinase ZRANB1 (Trabid). A ZRANB1 mutation changing cysteine to serine in amino acid position 443, affects ubiquitination. To analyze ZRANB1 function in the intestine, we generated Zranb1 C443S mutant knock-in (Zranb1C443S/C443S) mice using the CRISPR/Cas9 system. Zranb1C443S/C443S mice exhibited decreased mRNA expression and MUC2 production. Colonic organoids from Zranb1C443S/C443S mice displayed decreased Muc2 mRNA expression following differentiation into goblet cells. Finally, we analyzed dextran sulfate sodium-induced colitis to understand ZRANB1's role in intestinal inflammation. Zranb1C443S/C443S mice with colitis exhibited significant weight loss, reduced colon length, and worsening clinical and pathological scores, indicating that ZRANB1 contributes to intestinal homeostasis. Together, these results suggest that ZRANB1 regulates MUC2 expression and intestinal inflammation, which may help elucidating the pathogenesis of inflammatory bowel disease and developing new therapeutics targeting ZRANB1.


Asunto(s)
Colitis , Mucosa Intestinal , Proteasas Ubiquitina-Específicas , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Cisteína/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Sulfato de Dextran/toxicidad , Inflamación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Mucinas/metabolismo , Moco/metabolismo , ARN Mensajero/genética , Serina/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
4.
Biochem Biophys Res Commun ; 592: 74-80, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35032835

RESUMEN

Crohn's disease is an inflammatory disease of the gut caused by a complex interplay among genetic, microbial, and environmental factors. The intestinal tract is constantly exposed to metals and other trace elements ingested as food. Synchrotron radiation-induced X-ray fluorescence spectroscopy and X-ray absorption fine structure analysis revealed the deposition of nickel particles within Crohn's disease tissue specimens. After nickel particle stimulation, THP-1 cells showed filopodia formation and autophagic vacuoles containing lipid bodies. Nickel particles precipitated colitis in mice bearing mutations of the IBD susceptibility protein A20/TNFAIP3. Nickel particles also exacerbated dextran sulfate sodium-induced colitis in mice harboring myeloid cell-specific Atg5 deficiency. These findings illustrate that nickel particle ingestion may worsen Crohn's disease by perturbing autophagic processes in the intestine, providing new insights into environmental factors in Crohn's disease pathogenesis.


Asunto(s)
Enfermedad de Crohn/patología , Progresión de la Enfermedad , Inflamación/patología , Intestinos/patología , Níquel/toxicidad , Animales , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Sulfato de Dextran , Susceptibilidad a Enfermedades , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Macrófagos/ultraestructura , Ratones Endogámicos C57BL , Células THP-1 , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
5.
Gut ; 71(3): 487-496, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33963042

RESUMEN

OBJECTIVE: Although immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism. DESIGN: We generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging. RESULTS: We obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA-/-). IgA-/- exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA-/- had elevated Ca2+ signalling in Peyer's patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder. CONCLUSION: IgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.


Asunto(s)
Ileítis/etiología , Íleon/patología , Inmunoglobulina A/fisiología , Animales , Linfocitos B/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal , Homeostasis , Ileítis/metabolismo , Ileítis/patología , Íleon/metabolismo , Íleon/ultraestructura , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Microscopía Intravital , Masculino , Ratones , Ratones Mutantes , Linfocitos T/fisiología
6.
Cell Mol Gastroenterol Hepatol ; 13(1): 81-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34461283

RESUMEN

BACKGROUND & AIMS: Mucosal-associated invariant T (MAIT) cells are innate-like T cells restricted by major histocompatibility complex-related molecule 1 (MR1) and express a semi-invariant T cell receptor. Previously, we reported the activation status of circulating MAIT cells in patients with ulcerative colitis (UC) was associated with disease activity and that these cells had infiltrated the inflamed colonic mucosa. These findings suggest MAIT cells are involved in the pathogenesis of inflammatory bowel disease. We investigated the role of MAIT cells in the pathogenesis of colitis by using MR1-/- mice lacking MAIT cells and a synthetic antagonistic MR1 ligand. METHODS: Oxazolone colitis was induced in MR1-/- mice (C57BL/6 background), their littermate wild-type controls, and C57BL/6 mice orally administered an antagonistic MR1 ligand, isobutyl 6-formyl pterin (i6-FP). Cytokine production of splenocytes and colonic lamina propria lymphocytes from mice receiving i6-FP was analyzed. Intestinal permeability was assessed in MR1-/- and i6-FP-treated mice and their controls. The effect of i6-FP on cytokine production by MAIT cells from patients with UC was assessed. RESULTS: MR1 deficiency or i6-FP treatment reduced the severity of oxazolone colitis. i6-FP treatment reduced cytokine production in MAIT cells from mice and patients with UC. Although MR1 deficiency increased the intestinal permeability, i6-FP administration did not affect gut integrity in mice. CONCLUSIONS: These results indicate MAIT cells have a pathogenic role in colitis and suppression of MAIT cell activation might reduce the severity of colitis without affecting gut integrity. Thus, MAIT cells are potential therapeutic targets for inflammatory bowel disease including UC.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Células T Invariantes Asociadas a Mucosa , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/patología , Ratones , Ratones Endogámicos C57BL
7.
Biochem Biophys Rep ; 27: 101065, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34286109

RESUMEN

Ikarugamycin (IK) is an antibiotic which has been reported to have a variety of functions, such as inhibition of clathrin-mediated endocytosis (CME), anti-tumor effects and regulation of the immune system. Whether IK influences cytokine production is poorly understood. We have investigated the relationship between IK and production of tumor necrosis factor-α (TNF). TNF plays a pivotal role in pathogenesis of many diseases. Although the dynamics of soluble TNF (sTNF) has been widely explored so far, the functions of the membrane form of TNF (mTNF) have not been fully elucidated. We demonstrated that IK increases the amount of mTNF and prolongs the duration of TNF expression. This effect is unrelated to the shedding activity of disintegrin and metalloproteinase domain-containing protein 17 (ADAM 17). Our results revealed that there is a mechanism to terminate inflammation at the cellular level which IK dysregulates. Furthermore, IK can be a tool to study TNF signaling due to its effect of increasing mTNF expression.

8.
J Gastroenterol ; 56(8): 732-745, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34148144

RESUMEN

BACKGROUND: L-amino acids are the predominant forms of organic molecules on the planet, but recent studies have revealed that various foods contain D-amino acids, the enantiomers of L-amino acids. Though diet plays important roles in both the development and progression of inflammatory bowel disease (IBD), to our best knowledge, there has been no report on any potential interactions between D-amino acids and IBD. In this report, we aim to assess the effects of D-serine in a murine model of IBD. MATERIALS AND METHODS: To induce chronic colitis, naïve CD4 T cells (CD4+ CD62+ CD44low) from wild-type mice were adoptively transferred into Rag2-/- mice, after or before the mice were orally administered with D-serine. In vitro proliferation assays were performed to assess naïve CD4 T cell activation under the Th-skewing conditions in the presence of D-serine. RESULTS: Mice treated with D-serine prior to the induction of colitis exhibited a reduction in T-cell infiltration into the lamina propria and colonic inflammation that were not seen in mice fed with water alone or L-serine. Moreover, D-serine suppressed the progression of chronic colitis when administered after the disease induction. Under in vitro conditions, D-serine suppressed the proliferation of activated CD4 T cells and limited their ability to differentiate to Th1 and Th17 cells. CONCLUSION: Our results suggest that D-serine not only can prevent, but also has efficacious effects as a treatment for IBD.


Asunto(s)
Colitis/tratamiento farmacológico , Hidroliasas/uso terapéutico , Administración Oral , Animales , Colitis/prevención & control , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hidroliasas/farmacología , Ratones , Ratones Endogámicos C57BL
10.
Biochem Biophys Res Commun ; 542: 17-23, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33482469

RESUMEN

Nickel, the most frequent contact allergy cause, is widely used for various metallic materials and medical devices. Autophagy is an intracellular protein degradation system and contributes to metal recycling. However, it is unclear the functions of nickel in autophagy. We here demonstrated that NiCl2 induced microtubule-associated protein 1 light chain 3 (LC3)-II and LC3 puncta, markers of autophagosomes. Bafilomycin A1 (BafA1) treatment did not enhance LC3 puncta under NiCl2 stimulation, suggesting that NiCl2 did not induce autophagic flux. In addition, NiCl2 promotes the accumulation of SQSTM1/p62 and increased SQSTM1/p62 colocalization with lysosomal-associated membrane protein 1 (LAMP1). These data indicated that NiCl2 attenuates autophagic flux. Interestingly, NiCl2 induced the expression of the high-molecular-weight (MW) form of SQSTM1/p62. Inhibition of NiCl2-induced reactive oxygen species (ROS) reduced the high-MW SQSTM1/p62. We also showed that NiCl2-induced ROS activate transglutaminase (TG) activity. We found that transglutaminase 2 (TG2) inhibition reduced high-MW SQSTM1/p62 and SQSTM1/p62 puncta under NiCl2 stimulation, indicating that TG2 regulates SQSTM1/p62 protein homeostasis under NiCl2 stimulation. Our study demonstrated that nickel ion regulates autophagy flux and TG2 restricted nickel-dependent proteostasis.

11.
Cell Mol Gastroenterol Hepatol ; 11(5): 1483-1503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33515805

RESUMEN

BACKGROUND & AIMS: The reason why small intestinal cancer is rarer than colorectal cancer is not clear. We hypothesized that intraepithelial lymphocytes (IELs), which are enriched in the small intestine, are the closest immune cells to epithelial cells, exclude tumor cells via cell-to-cell contact. METHODS: We developed DPE-green fluorescent protein (DPE-GFP) × adenomatous polyposis coli; multiple intestinal neoplasia (APCmin ) mice, which is a T-cell-reporter mouse with spontaneous intestinal tumors. We visualized the dynamics of IELs in the intestinal tumor microenvironment and the interaction between IELs and epithelial cells, and the roles of cell-to-cell contact in anti-intestinal tumor immunity using a novel in vivo live-imaging system and a novel in vitro co-culture system. RESULTS: In the small intestinal tumor microenvironment, T-cell movement was restricted around blood vessels and the frequency of interaction between IELs and epithelial cells was reduced. Genetic deletion of CD103 decreased the frequency of interaction between IELs and epithelial cells, and increased the number of small intestinal tumors. In the co-culture system, wild-type IELs expanded and infiltrated to intestinal tumor organoids from APCmin mice and reduced the viability of them, which was cell-to-cell contact and CD103 dependent. CONCLUSIONS: The abundance of IELs in the small intestine may contribute to a low number of tumors, although this system may not work in the colon because of the sparseness of IELs. Strategies to increase the number of IELs in the colon or enhance cell-to-cell contact between IELs and epithelial cells may be effective for the prevention of intestinal tumors in patients with a high cancer risk.


Asunto(s)
Antígenos CD/fisiología , Comunicación Celular , Cadenas alfa de Integrinas/fisiología , Mucosa Intestinal/inmunología , Neoplasias Intestinales/prevención & control , Intestino Delgado/inmunología , Linfocitos Intraepiteliales/inmunología , Microambiente Tumoral , Animales , Técnicas de Cocultivo , Femenino , Mucosa Intestinal/citología , Neoplasias Intestinales/inmunología , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Intestino Delgado/patología , Linfocitos Intraepiteliales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides/inmunología , Organoides/patología
12.
Biochem Biophys Res Commun ; 535: 99-105, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33352461

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expressed in T cells may regulate immune responses in the gut. In addition to T cells, B cells are also an important population in the gut-associated lymphoid tissues that orchestrate mucosal homeostasis. However, the role of CEACAM1 in B cells has not been elucidated. We herein analyzed mature B cells to determine the functions of CEACAM1. Flow cytometry revealed high expression of CEACAM1 on B cells in secondary lymphoid tissues. Cytokine production induced by activation of B cell receptor (BCR) signaling was suppressed by CEACAM1 signaling in contrast to that associated with either Toll-like receptor 4 or CD40 signaling. Confocal microscopy revealed co-localization of CEACAM1 and BCR when activated with anti-Igµ F(ab')2 fragment. Overexpression of CEACAM1 in a murine B cell line, A20, resulted in reduced expressions of activation surface markers with decreased Ca2+ influx after BCR signal activation. Overexpression of CEACAM1 suppressed BCR signal cascade in A20 cells in association with decreased spontaneous proliferation. Our results suggest that CEACAM1 can regulate BCR-mediated mature B cell activation in lymphoid tissues. Therefore, further studies of this molecule may lead to greater insights into the mechanisms of immune responses within peripheral tissues and the potential treatment of inflammatory diseases.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Animales , Linfocitos B/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Citocinas/biosíntesis , Femenino , Ratones Endogámicos C57BL
13.
FEBS Lett ; 594(10): 1586-1595, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31997355

RESUMEN

Autophagy is an intracellular process that regulates the degradation of cytosolic proteins and organelles. Dying cells often accumulate autophagosomes. However, the mechanisms by which necroptotic stimulation induces autophagosomes are not defined. Here, we demonstrate that the activation of necroptosis with TNF-α plus the cell-permeable pan-caspase inhibitor Z-VAD induces LC3-II and LC3 puncta, markers of autophagosomes, via the receptor-interacting protein kinase 3 (RIPK3) in intestinal epithelial cells. Surprisingly, necroptotic stimulation reduces autophagic activity, as evidenced by enlarged puncta of the autophagic substrate SQSTM1/p62 and its increased colocalization with LC3. However, necroptotic stimulation does not induce the lysosomal-associated membrane protein 1 (LAMP1) nor syntaxin 17, which mediates autophagosome-lysosome fusion, to colocalize with LC3. These data indicate that necroptosis attenuates autophagic flux before the lysosome fusion step. Our findings may provide insights into human diseases involving necroptosis.


Asunto(s)
Autofagia , Células Epiteliales/citología , Células Epiteliales/enzimología , Intestinos/citología , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Necroptosis/efectos de los fármacos , Oligopéptidos/farmacología , Proteína Sequestosoma-1/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
14.
Biochem Biophys Res Commun ; 522(4): 971-977, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31810607

RESUMEN

In Japan and other Asian countries, increased fat uptake induced by a westernized diet is thought to be associated with an increased incidence of inflammatory bowel disease, colorectal cancer and food allergies; however, the mechanism for this remains unclear. High-fat diet (HFD)-fed mice are common animal models used to examine the effect of fat intake in vivo. HFDs are reported to exacerbate DSS-induced colitis and intestinal tumorigenesis, but the effect of HFDs on the intestines before disease induction is often overlooked. We found that the intestinal and gut-associated lymphoid tissue (GALT) morphology of HFD-fed mice differed from that of standard diet (SD)-fed mice. To clarify the mechanism by which fat intake increases intestinal diseases, we analyzed the morphological and immunological aspects of the intestines of HFD-fed mice as well as the molecular mechanisms and physiology. Feeding an HFD for 3 weeks induced atrophy of the small intestine, colon and GALT and reduced the number of small intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). Feeding an HFD for only one day reduced the number of small intestinal (SI)-IELs and SI-LPLs. The effect of feeding a 3-week HFD continued for 2 weeks after returning to the SD. The effect of the HFD on the intestinal immune system was independent of the gut microbes. We hypothesized that the cytotoxicity of the abundant HFD-derived free fatty acids in the intestinal lumen impairs the intestinal immune system. Both saturated and unsaturated free fatty acids were toxic to intestinal T-cells in vitro. Orally administering free fatty acids reduced the number of SI-IELs and LPLs. Using a lipase inhibitor to reduce the luminal free fatty acids attenuated the HFD-induced changes in the intestinal immune system, while using a statin to reduce the serum free fatty acids did not. Thus, HFD-induced free fatty acids damaged the intestines; this effect was termed "intestinal lipotoxicity". Because sustained reduction of SI-LPLs after HFD feeding exacerbated indomethacin-induced small intestinal damage, lipotoxicity to the human intestines incurred by consuming a westernized diet in Japan may increase intestinal diseases such as IBD, colorectal cancer or food allergies.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos no Esterificados/toxicidad , Sistema Inmunológico/patología , Mucosa Intestinal/patología , Animales , Atrofia , Colon/patología , Ácidos Grasos no Esterificados/sangre , Conducta Alimentaria , Microbioma Gastrointestinal/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Indometacina , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Recuento de Linfocitos , Linfocitos/efectos de los fármacos , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/patología , Masculino , Ratones Endogámicos C57BL
15.
Biochem Biophys Res Commun ; 523(2): 328-335, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31864702

RESUMEN

Intraepithelial lymphocytes (IELs) are very unique in the intestinal immune system. They include γδT cells and CD4-CD8-TCRαß+T cells (double negative: DNT), both of which are specific for the intestine, in addition to CD4+ and CD8+ T cells. IELs exist within the monolayer of the intestinal epithelial cells and dynamically move between lamina propria (LP) and intraepithelial (IE) region. The localization and movement patterns of IEL subsets and the regulatory factors have been unknown. Here, we developed a novel in vitro live imaging system and quantified the motility and morphological changes among subsets of IELs. We identified CD8αα as the key regulatory factor. IELs, especially γδ and DNT cells, showed amoeboid shape and frequent morphological change, while most T cells in MLN or SP showed round shape in vitro. TCR signal, IL-15, gut microbes, CCL25, and integrin αEß7 expression were non-essential for IEL movement in vitro. CD8αα+ cells showed higher motility and larger morphological changes than CD8αα- cells. Adoptive transferred CD8αα+CD4-IELs localized to IE region of recipient NSG mice, while CD8αα-CD4-IELs localized to the LP. Our results showed that the CD8αα/TL signal is essential for the localization of IELs to IE region in vivo. CD8αα/TL may be an effective target to increase the number of IELs, which protects against intestinal infection, allergy, tumorigenesis or inflammation.


Asunto(s)
Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos Intraepiteliales/citología , Linfocitos Intraepiteliales/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/clasificación , Movimiento Celular/inmunología , Forma de la Célula , Quimiocinas CC/metabolismo , Femenino , Inmunidad Mucosa , Interleucina-15/metabolismo , Intestino Delgado/citología , Intestino Delgado/inmunología , Linfocitos Intraepiteliales/clasificación , Microscopía Intravital , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos
16.
Clin J Gastroenterol ; 12(5): 434-440, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30968266

RESUMEN

Chronic diarrhea is one of the major symptoms in gastroenterology. However, this may be caused by pathologic conditions for which the diagnosis is critical. Villous atrophy, as an endoscopic lesion, accompanied by chronic diarrhea can occasionally be observed in the patients with inflammatory diseases of the gastrointestinal (GI) tract. Herein, we present a case with persistent diarrhea accompanied by intestinal wall thickening without any other significant endoscopic features other than villous atrophy in the jejunum and the ileum, where we diagnosed as an indolent T cell lymphoproliferative disorder (T-LPD) of the GI tract, defined in the 2016-2017 revised World Health Organization classification, via single-balloon enteroscopy (SBE). Interestingly, we found the same lymphocyte infiltration from the distal third portion of the duodenum, where gastroscopy could not reach, via SBE, even though no endoscopic findings were observed such as villous atrophy. Since infiltrating cells in the intestinal tissues were CCR4+, mogamulizumab was administered with resulting durable symptomatic remission for more than 2 years. Patients with persistent diarrhea may have serious small intestinal disorder including not only chronic inflammatory diseases but also lymphoid neoplasmic conditions including T-LPD of GI tract.


Asunto(s)
Intestino Delgado/patología , Trastornos Linfoproliferativos/diagnóstico , Enteroscopia de Balón Individual/métodos , Linfocitos T/patología , Anciano , Atrofia/etiología , Atrofia/patología , Biopsia , Diarrea/etiología , Humanos , Intestino Delgado/inmunología , Trastornos Linfoproliferativos/complicaciones , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/patología , Masculino , Tomografía Computarizada por Rayos X
17.
Biochem Biophys Res Commun ; 496(2): 367-373, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29330048

RESUMEN

Although previous studies have suggested that appendix seems to be involved in the colitis, the role of this in the pathogenesis remains unclear. In this study, we assessed the importance of appendiceal lymphoid follicles, specifically the cecal patches (CP) in mice, using an experimental colitis model. Treatment with oxazolone resulted in ulcerations particularly at CP with follicular expansion as well as colitis. The colitis was attenuated by either appendectomy or the absence of mature B cells. We therefore established an intravital imaging system accompanied by the fluorescence resonance energy transfer technology to analyze the dynamic immune response of CP B cells. Our observation revealed frequent Ca2+ signaling in CP B cells during the early phase of colitis development. These findings suggested that the CP B cells may be involved in the pathogenesis of colitis including inflammatory bowel diseases in humans.


Asunto(s)
Apéndice/inmunología , Ciego/inmunología , Colitis/inmunología , Colon/inmunología , Estructuras Linfoides Terciarias/inmunología , Animales , Apéndice/diagnóstico por imagen , Apéndice/patología , Linfocitos B/inmunología , Linfocitos B/patología , Señalización del Calcio , Ciego/diagnóstico por imagen , Ciego/patología , Colitis/inducido químicamente , Colitis/diagnóstico por imagen , Colitis/patología , Colon/diagnóstico por imagen , Colon/patología , Modelos Animales de Enfermedad , Humanos , Microscopía Intravital , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Oxazolona , Estructuras Linfoides Terciarias/diagnóstico por imagen , Estructuras Linfoides Terciarias/patología
18.
Autophagy ; 14(2): 347-358, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29164995

RESUMEN

Ubiquitin chains are formed with 8 structurally and functionally distinct polymers. However, the functions of each polyubiquitin remain poorly understood. We developed a polyubiquitin-mediated fluorescence complementation (PolyUb-FC) assay using Kusabira Green (KG) as a split fluorescent protein. The PolyUb-FC assay has the advantage that monoubiquitination is nonfluorescent and chain-specific polyubiquitination can be directly visualized in living cells without using antibodies. We applied the PolyUb-FC assay to examine K33-linked polyubiquitin. We demonstrated that SQSTM1/p62 puncta colocalized with K33-linked polyubiquitin and this interaction was modulated by the ZRANB1/TRABID-K29 and -K33 linkage-specific deubiquitinase (DUB). We further showed that the colocalization of K33-linked polyubiquitin and MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) puncta was impaired by SQSTM1/p62 deficiency. Taken together, these findings provide novel insights into how atypical polyubiquitin is recruited by SQSTM1/p62. Finally, we developed an inducible-PolyUb-FC system for visualizing chain-specific polyubiquitin. The PolyUb-FC will be a useful tool for analyzing the dynamics of atypical polyubiquitin chain generation.


Asunto(s)
Imagen Molecular/métodos , Imagen Óptica/métodos , Poliubiquitina/metabolismo , Proteína Sequestosoma-1/metabolismo , Ubiquitinación , Animales , Autofagia/fisiología , Línea Celular , Fluorescencia , Células HEK293 , Humanos
19.
Sci Rep ; 7(1): 13650, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057966

RESUMEN

Mice deficient in the megakaryoblastic leukaemia 1 (Mkl1) gene experience less severe dextran sulphate sodium (DSS)-induced colitis, implying that Mkl1 plays a pathological role in inflammatory bowel disease (IBD). However, the contribution of Mkl1 to the development of colitis remains to be elucidated. The expression of Mkl1 is higher in the colonic lamina propria macrophages (LPMac) of DSS-treated mice than in those of control mice. Therefore, we established a transgenic mouse line that overexpresses human MKL1 (MKL1-Tg) specifically in cells of the monocyte/macrophage lineage, in order to investigate the potential role of macrophage MKL1 in the pathogenesis of colitis. MKL1-Tg mice displayed spontaneous colon shortening and rectal prolapse. Flow cytometric and quantitative RT-PCR analyses revealed that, in MKL1-Tg mice compared to littermate controls, the population of LPMac was decreased and had an altered inflammatory phenotype indicative of impaired anti-inflammatory properties, whereas bone marrow-derived macrophages from MKL1-Tg mice skewed towards M1 polarisation. In addition, MKL1-Tg mice had higher susceptibility to DSS-induced colitis than their littermate controls. These observations indicated that MKL1 crucially contributes to the development of colitis via the regulation of the function of macrophages, suggesting that it may be a potential therapeutic target for the prevention of IBD.


Asunto(s)
Colitis/metabolismo , Macrófagos/metabolismo , Transactivadores/metabolismo , Animales , Polaridad Celular , Colitis/patología , Colon/metabolismo , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/metabolismo , Femenino , Expresión Génica , Humanos , Inflamación/metabolismo , Inflamación/patología , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Prolapso Rectal/metabolismo , Prolapso Rectal/patología , Transactivadores/genética
20.
Biochem Biophys Res Commun ; 484(3): 636-641, 2017 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-28153718

RESUMEN

Genome-wide association studies have identified autophagy-related susceptibility genes for inflammatory bowel disease (IBD); however, whether autophagy regulators can be utilized as therapeutic targets remains unclear. To identify novel microtubule-associated protein 1 light chain 3 (LC3)-interacting proteins in intestinal epithelial cells (IECs), we isolated primary IECs from green fluorescent protein (GFP)-LC3 mice. We performed immunoprecipitation with a GFP antibody and then analyzed co-immunoprecipitates by mass spectrometry. HADHA was identified as an LC3-interacting protein from primary IECs. The HADHA gene encodes the alpha subunit of the mitochondrial trifunctional protein. Given that HADHA catalyzes the last three steps of mitochondrial beta-oxidation of long-chain fatty acids, we investigated whether long-chain fatty acids induce autophagy in IECs. We found that palmitic acid induced autophagy in DLD-1, HT29, and HCT116 cells. HADHA was expressed in not only the mitochondria but also the cytosol. LC3 puncta co-localized with HADHA, which were enhanced by palmitic acid stimulation. However, LC3 puncta did not co-localize with Tom20, suggesting that HADHA was induced to associate with LC3 puncta at sites other than the mitochondria. Thus, HADHA may have extra-mitochondrial functions. Furthermore, we found that palmitic acid induced cell death in IECs, which was accelerated by bafilomycin A and chloroquine. These findings suggested that palmitic acid-induced autophagy supports the survival of IECs. Taken together, these results suggested that HADHA is involved in long-chain fatty acid-induced autophagy in IECs, thus providing new insights into the pathology of IBD and revealing novel therapeutic targets of IBD.


Asunto(s)
Autofagia/fisiología , Ácidos Grasos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Trifuncional Mitocondrial/metabolismo , Animales , Alcaloides de Berberina/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...