Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Imaging ; 112: 100-106, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971266

RESUMEN

We aimed to determine the intra-site repeatability and cross-site reproducibility of T1 and T2* relaxation times and quantitative susceptibility (χ) values obtained through quantitative parameter mapping (QPM) at 3 T. This prospective study included three 3-T scanners with the same hardware and software platform at three sites. The brains of twelve healthy volunteers were scanned three times using QPM at three sites. Intra-site repeatability and cross-site reproducibility were evaluated based on voxel-wise and region-of-interest analyses. The within-subject coefficient of variation (wCV), within-subject standard deviation (wSD), linear regression, Bland-Altman plot, and intraclass correlation coefficient (ICC) were used for evaluation. The intra-site repeatability wCV was 11.9 ± 6.86% for T1 and 3.15 ± 0.03% for T2*, and wSD of χ at 3.35 ± 0.10 parts per billion (ppb). Intra-site ICC(1,k) values for T1, T2*, and χ were 0.878-0.904, 0.972-0.976, and 0.966-0.972, respectively, indicating high consistency within the same scanner. Linear regression analysis revealed a strong agreement between measurements from each site and the site-average measurement, with R-squared values ranging from 0.79 to 0.83 for T1, 0.94-0.95 for T2*, and 0.95-0.96 for χ. The cross-site wCV was 13.4 ± 5.47% for T1 and 3.69 ± 2.25% for T2*, and cross-site wSD of χ at 4.08 ± 3.22 ppb. The cross-site ICC(2,1) was 0.707, 0.913, and 0.902 for T1, T2*, and χ, respectively. QPM provides T1, T2*, and χ values with an intra-site repeatability of <12% and cross-site reproducibility of <14%. These findings may contribute to the development of multisite studies.

2.
Magn Reson Med Sci ; 6(4): 241-8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18239362

RESUMEN

PURPOSE: A tool to support the subject is generally used for kinematic joint imaging with an open MRI apparatus because of difficulty setting the image plane correctly. However, use of a support tool requires a complicated procedure to position the subject, and setting the image plane when the joint angle changes is time consuming. Allowing the subject to move freely enables better diagnoses when kinematic joint imaging is performed. We therefore developed an interactive scan control (ISC) to facilitate the easy, quick, and accurate setting of the image plane even when a support tool is not used. METHODS: We used a 0.4T magnetic resonance (MR) imaging system open in the horizontal direction. The ISC determines the image plane interactively on the basis of fluoroscopy images displayed on a user interface. The imaging pulse is a balanced steady-state acquisition with rewound gradient echo (SARGE) sequence with update time less than 2 s. Without using a tool to support the knee, we positioned the knee of a healthy volunteer at 4 different joint angles and set the image plane through the patella and femur at each of the angles. Lumbar imaging is also demonstrated with ISC. RESULTS: Setting the image plane was easy and quick at all knee angles, and images obtained clearly showed the patella and femur. Total imaging time was less than 10 min, a fourth of the time needed when a support tool is used. We also used our ISC in kinematic imaging of the lumbar. CONCLUSION: The ISC shortens total time for kinematic joint imaging, and because a support tool is not needed, imaging can be done more freely in an open MR imaging apparatus.


Asunto(s)
Articulación de la Rodilla/anatomía & histología , Vértebras Lumbares/anatomía & histología , Imagen por Resonancia Magnética/métodos , Fenómenos Biomecánicos , Fluoroscopía , Humanos , Postura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA