Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6402, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080268

RESUMEN

Mantle xenoliths usually represent fragments derived from the depleted and degassed lithospheric mantle with 3He/4He isotope ratios (6 ± 1 RA) lower than those of mid-ocean ridge basalts (8 ± 1 RA). Otherwise, basalts from oceanic islands related to hotspots often have high 3He/4He ratios (>10 RA), suggesting a deep and pristine undegassed mantle source. Here we present a striking high-3He/4He component (up to 27.68 RA) recorded by spinel-facies mantle xenoliths from Patagonia. Remarkably, the highest ratios were found in a long-lived trans-lithospheric suture zone related to the Carboniferous-Permian collision of two continental blocks: the Deseado and the North Patagonian massifs. The mantle xenoliths with notably high-3He/4He ratios are inferred to be fragments of the shallow asthenosphere rising through the eroded and rejuvenated thin lithosphere. The pristine helium component is derived from the western margin of the Karoo mantle plume, related to the initial stages of the Gondwana fragmentation.

2.
ACS Nano ; 18(24): 15970-15977, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838258

RESUMEN

Nanoparticle assembly is a material synthesis strategy that enables precise control of nanoscale structural features. Concepts from traditional crystal growth research have been tremendously useful in predicting and programming the unit cell symmetries of these assemblies, as their thermodynamically favored structures are often identical to atomic crystal analogues. However, these analogies have not yielded similar levels of influence in programming crystallite shapes, which are a consequence of both the thermodynamics and kinetics of crystal growth. Here, we demonstrate kinetic control of the colloidal crystal shape using nanoparticle building blocks that rapidly assemble over a broad range of concentrations, thereby producing well-defined crystal habits with symmetrically oriented dendritic protrusions and providing insight into the crystals' morphological evolution. Counterintuitively, these nonequilibrium crystal shapes actually become more common for colloidal crystals synthesized closer to equilibrium growth conditions. This deviation from typical crystal growth processes observed in atomic or molecular crystals is shown to be a function of the drastically different time scales of atomic and colloidal mass transport. Moreover, the particles are spherical with isotropic ligand grafts, and these kinetic crystal habits are achieved without the need for specifically shaped particle building blocks or external templating or shape-directing agents. Thus, this work provides generalizable design principles to expand the morphological diversity of nanoparticle superlattice crystal habits beyond the anhedral or equilibrium polyhedral shapes synthesized to date. Finally, we use this insight to synthesize crystallite shapes that have never before been observed, demonstrating the ability to both predict and program kinetically controlled superlattice morphologies.

3.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895451

RESUMEN

Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.

4.
JID Innov ; 4(2): 100246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38357212

RESUMEN

Cutaneous sclerotic chronic graft-versus-host disease (cGVHD) is a common and highly morbid complication of allogeneic hematopoietic stem cell transplantation. Our goals were to identify signals active in the skin of patients with sclerotic cGVHD in an effort to better understand how to treat this manifestation and to explore the heterogeneity of the disease. We identified genes that are significantly upregulated in the skin of patients with sclerotic cGVHD (n = 17) compared with those in the skin of patients who underwent allogeneic hematopoietic stem cell transplantation without cutaneous cGVHD (n = 9) by bulk RNA sequencing. Sclerotic cGVHD was most associated with T helper 1, phagocytic, and fibrotic pathways. In addition, different transcriptomic groups of affected patients were discovered: those with fibrotic and inflammatory/T helper 1 gene expression (the fibroinflammatory group) and those with predominantly fibrotic/TGFß-associated expression (the fibrotic group). Further study will help elucidate whether these gene expression findings can be used to tailor treatment decisions. Multiple proteins encoded by highly induced genes in the skin (SFRP4, SERPINE2, COMP) were also highly induced in the plasma of patients with sclerotic cGVHD (n = 16) compared with those in plasma of control patients who underwent allogeneic hematopoietic stem cell transplantation without sclerotic cGVHD (n = 17), suggesting these TGFß and Wnt pathway mediators as candidate blood biomarkers of the disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA