Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 122(22): 4395-4413, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865819

RESUMEN

The glassy cytoplasm, crowded with bio-macromolecules, is fluidized in living cells by mechanical energy derived from metabolism. Characterizing the living cytoplasm as a nonequilibrium system is crucial in elucidating the intricate mechanism that relates cell mechanics to metabolic activities. In this study, we conducted active and passive microrheology in eukaryotic cells, and quantified nonthermal fluctuations by examining the violation of the fluctuation-dissipation theorem. The power spectral density of active force generation was estimated following the Langevin theory extended to nonequilibrium systems. However, experiments performed while regulating cellular metabolic activity showed that the nonthermal displacement fluctuation, rather than the active nonthermal force, is linked to metabolism. We discuss that mechano-enzymes in living cells do not act as microscopic objects. Instead, they generate meso-scale collective fluctuations with displacements controlled by enzymatic activity. The activity induces structural relaxations in glassy cytoplasm. Even though the autocorrelation of nonthermal fluctuations is lost at long timescales due to the structural relaxations, the nonthermal displacement fluctuation remains regulated by metabolic reactions. Our results therefore demonstrate that nonthermal fluctuations serve as a valuable indicator of a cell's metabolic activities, regardless of the presence or absence of structural relaxations.


Asunto(s)
Citoplasma
2.
Biophys J ; 122(10): 1781-1793, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37050875

RESUMEN

Active microrheology was conducted in living cells by applying an optical-trapping force to vigorously fluctuating tracer beads with feedback-tracking technology. The complex shear modulus G(ω)=G'(ω)-iG″(ω) was measured in HeLa cells in an epithelial-like confluent monolayer. We found that G(ω)∝(-iω)1/2 over a wide range of frequencies (1 Hz < ω/2π < 10 kHz). Actin disruption and cell-cycle progression from G1 to S and G2 phases only had a limited effect on G(ω) in living cells. On the other hand, G(ω) was found to be dependent on cell metabolism; ATP-depleted cells showed an increased elastic modulus G'(ω) at low frequencies, giving rise to a constant plateau such that G(ω)=G0+A(-iω)1/2. Both the plateau and the additional frequency dependency ∝(-iω)1/2 of ATP-depleted cells are consistent with a rheological response typical of colloidal jamming. On the other hand, the plateau G0 disappeared in ordinary metabolically active cells, implying that living cells fluidize their internal states such that they approach the critical jamming point.


Asunto(s)
Actinas , Adenosina Trifosfato , Humanos , Células HeLa , Reología , Módulo de Elasticidad , Actinas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...