Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 914: 169865, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176557

RESUMEN

A district-wise emission inventory was made for the states and union territories (UTs) of the Indian Indo-Gangetic Plain for the base year of 2018 to estimate the emissions of PM2.5 from various sectors. In addition to conventional sectors, emissions from road dust, fossil-fuelled irrigation pumps, and construction dust were also taken into account. Total primary anthropogenic PM2.5 emission was estimated to be 3157.3 Gg (or kilo-tones) for the year 2018 of which 32 % originated from the industrial sector, 27 % from domestic fuel consumption, 23 % from open burning, 14 % from road dust, 2 % from vehicular and 2 % from various unorganized sectors. The highest emissions were observed during the premonsoon (1013 Gg/year) followed by postmonsoon (802Gg/year), winter (788 Gg/year), and lowest during the monsoon (554Gg/year). Among the states and UTs, Uttar Pradesh contributes the most in total emissions (39 %), followed by Punjab (19 %), Bihar (17 %), West Bengal (13 %), Haryana (11 %), Delhi (0.9 %) and Chandigarh (0.1 %). Emission for per capita and for billion-rupee of state gross domestic product (GDP) were the highest for Punjab and Haryana. Results have identified the districts of Punjab (Firozpur, Ludhiana, Jalandhar), scattered pockets of Uttar Pradesh (Sonbhadra, Agra, Varanasi, Kanpur, Lucknow, Prayagraj) and lower Gangetic delta (Gaya, Muzaffarpur, Burdwan, both 24-parganas and Murshidabad) as potent hotspots of cumulative PM2.5 emissions. On the other hand, the districts of Punjab (Faridkot, Mansa, Muktsar, Fatehgarh) were found to be the hotspots for per capita emissions. High emissions were observed from the domestic sector, brick kilns, and micro and small-scale industries, and regulating norms should be more stringent for these sectors. Such a study will be a value add for the policymakers and health experts to assess emission hot spots, pollution simulation, and associated mortality analysis of the region.

2.
Sci Total Environ ; 912: 169232, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38097065

RESUMEN

This research delves into the pivotal issue of road dust emissions and their profound ramifications on air quality across diverse regions of India. In pursuit of this objective, the study initiated a comprehensive field campaign to estimate silt loading (sL) values and evaluate the distribution of vehicles at 259 locations spanning 32 Indian cities. Remarkable disparities in sL values were observed across different road types and states. Notably, sites in Rajasthan, characterized by its arid Aravalli range and industrial activities, emerged as stark outliers, exhibiting significantly elevated sL values (up to 137 g/m2) compared to their counterparts. The regional analysis goes further to elucidate the relation between climatic conditions, topography, and silt loading. As a broader trend, roads in North India have higher sL values in contrast to those in South India. Further, a comprehensive particulate matter road dust emission inventory for the entire India in the year 2022 was developed using the vehicle registration data from 1352 road transport offices nationwide, in conjunction with the data from the field campaign concerning sL values and vehicle counts. Specific states such as Rajasthan, Uttar Pradesh, Maharashtra, Karnataka, and Gujarat emerged as the predominant contributors to road dust emissions. These states not only exhibit elevated sL values, but also account for a substantial proportion of the total registered vehicles in India, thereby underscoring the pressing imperative for effective mitigation measures. Weather Research and Forecasting coupled with chemistry (WRF-Chem) simulations, using this emission inventory, reveal that PM2.5 concentrations stemming from road dust exceed the World Health Organization guidelines in 55 % of the states across India. Further analysis delineates that more than 10,000 lives are annually lost due to PM2.5 pollution attributable to road dust in India, with the potential to salvage 10 % of these lives by paving all roads throughout the country.

3.
Sci Total Environ ; 904: 167363, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769726

RESUMEN

To investigate the emission and concentration of PM10 and PM2.5-related road dust over Agra, a typical semi-arid urban atmosphere of the Indo Gangetic Plain (IGP), a fine-resolution emission inventory and receptor modeling-based source apportionment was undertaken for the year 2019. On-road, the silt load of Agra (7-55 g/m2 of the road) was found to be 10 to 50 times higher than that reported in advanced countries. The silt load over Agra varied widely depending on road conditions, long-range transport, and land-use pattern. Depending on the silt load, land-use and fleet averaged weight, the annual emission factor for road dust was estimated as 14.3 ± 3.2 (PM10) and 4.4 ± 1.4 (PM2.5) gm/VKT (vehicle kilometer travel). PM10 emission of road dust alone contributed 80 % (29 ± 6 t/d) to the total emission of PM10 and 68 % (9 ± 3 t/d) to PM2.5 of the city with the maximum emission being in industrial areas. Chemical analysis of ambient PM10, PM2.5, and road dust samples showed that the road dust was enriched with geogenic components and was in good agreement with the road dust profile identified from the positive matrix factorization receptor model. The model estimated contribution of road dust (summer and winter combined) to PM10 and PM2.5 ambient air levels was 28 % (67 µg/m3) and 23 % (27 µg/m3) respectively. Summer showed a larger road dust contribution than winter due to strong surface wind and dry road conditions. Results have revealed that the emissions and concentrations of road dust are closely interrelated with road conditions (silt load), land-use patterns, VKT, weight of the vehicles, and micrometeorological conditions. The large road dust emission in IGP cities requires better road conditions and traffic management to curb the emission.

4.
J Hazard Mater ; 316: 1-10, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27208611

RESUMEN

The by-products of TiO2-based photocatalytic oxidation (PCO) of ethylbenze, p,m-xylene, o-xylene and toluene (EXT) in vapour phase and those adsorbed on the catalyst surface (solid phase) were identified and quantified on GC/GC-MS. A factor was developed in terms of µg of by-product produced per mg of EXT removed per sq-meter surface area of catalyst for estimating the mass of by-products produced. The by-products quantified were: acetone, hexane, cyclohexane, benzene, crotonaldehyde, toulene, 1,4-benzoquinone, benzaldehyde, phenol, benzylalcohol, cresol, hydroquinone and benzoic acid. The by-products accounted for 2.3-4.2% of the total mass of EXT treated. For treating concentrations of 220µg/m(3) (ethylbenzene), 260µg/m(3) (p,m-xylene), 260µg/m(3) (o-xylene) and 320µg/m(3) (toluene), at a flow rate of 7L/min for 12h in a laboratory of volume 195m(3), the estimated cancer risks of by-products to the occupants were 1.51×10(-6), 1.06×10(-6), 4.69×10(-7), and 1.58×10(-9) respectively. The overall hazard index (HI) of the by-products for EXT was of the order 10(-4); which is much less than desired level of 1.0. The estimated risks were within the acceptable level. This study has also suggested the photocatalytic degradation pathways for EX which are through formation of toluene.


Asunto(s)
Derivados del Benceno/química , Medición de Riesgo , Tolueno/química , Xilenos/química , Contaminación del Aire Interior , Benceno/análisis , Benzoquinonas , Catálisis , Técnicas de Química Analítica , Cromatografía de Gases y Espectrometría de Masas , Humanos , Modelos Estadísticos , Oxidación-Reducción , Oxígeno/química , Fotoquímica , Modelos de Riesgos Proporcionales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA