Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 20232023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37114803

RESUMEN

The UK Biobank (UKB), a large-scale biomedical database that includes demographic and electronic health record data for more than half a million ethnically diverse participants, is a potentially valuable resource for the study of health disparities. However, publicly accessible databases that catalog health disparities in the UKB do not exist. We developed the UKB Health Disparities Browser with the aims of (i) facilitating the exploration of the landscape of health disparities in the UK and (ii) directing the attention to areas of disparities research that might have the greatest public health impact. Health disparities were characterized for UKB participant groups defined by age, country of residence, ethnic group, sex and socioeconomic deprivation. We defined disease cohorts for UKB participants by mapping participant International Classification of Diseases, Tenth Revision (ICD-10) diagnosis codes to phenotype codes (phecodes). For each of the population attributes used to define population groups, disease percent prevalence values were computed for all groups from phecode case-control cohorts, and the magnitude of the disparities was calculated by both the difference and ratio of the range of disease prevalence values among groups to identify high- and low-prevalence disparities. We identified numerous diseases and health conditions with disparate prevalence values across population attributes, and we deployed an interactive web browser to visualize the results of our analysis: https://ukbatlas.health-disparities.org. The interactive browser includes overall and group-specific prevalence data for 1513 diseases based on a cohort of >500 000 participants from the UKB. Researchers can browse and sort by disease prevalence and prevalence differences to visualize health disparities for each of the five population attributes, and users can search for diseases of interest by disease names or codes. Database URL https://ukbatlas.health-disparities.org/.


Asunto(s)
Bancos de Muestras Biológicas , Humanos , Reino Unido/epidemiología
2.
Sci Rep ; 12(1): 19797, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396674

RESUMEN

The World Health Organization recently defined hypertension and type 2 diabetes (T2D) as modifiable comorbidities leading to dementia and Alzheimer's disease. In the United States (US), hypertension and T2D are health disparities, with higher prevalence seen for Black and Hispanic minority groups compared to the majority White population. We hypothesized that elevated prevalence of hypertension and T2D risk factors in Black and Hispanic groups may be associated with dementia disparities. We interrogated this hypothesis using a cross-sectional analysis of participant data from the All of Us (AoU) Research Program, a large observational cohort study of US residents. The specific objectives of our study were: (1) to compare the prevalence of dementia, hypertension, and T2D in the AoU cohort to previously reported prevalence values for the US population, (2) to investigate the association of hypertension, T2D, and race/ethnicity with dementia, and (3) to investigate whether race/ethnicity modify the association of hypertension and T2D with dementia. AoU participants were recruited from 2018 to 2019 as part of the initial project cohort (R2019Q4R3). Participants aged 40-80 with electronic health records and demographic data (age, sex, race, and ethnicity) were included for analysis, yielding a final cohort of 125,637 individuals. AoU participants show similar prevalence of hypertension (32.1%) and T2D (13.9%) compared to the US population (32.0% and 10.5%, respectively); however, the prevalence of dementia for AoU participants (0.44%) is an order of magnitude lower than seen for the US population (5%). AoU participants with dementia show a higher prevalence of hypertension (81.6% vs. 31.9%) and T2D (45.9% vs. 11.4%) compared to non-dementia participants. Dominance analysis of a multivariable logistic regression model with dementia as the outcome shows that hypertension, age, and T2D have the strongest associations with dementia. Hispanic was the only race/ethnicity group that showed a significant association with dementia, and the association of sex with dementia was non-significant. The association of T2D with dementia is likely explained by concurrent hypertension, since > 90% of participants with T2D also had hypertension. Black race and Hispanic ethnicity interact with hypertension, but not T2D, to increase the odds of dementia. This study underscores the utility of the AoU participant cohort to study disease prevalence and risk factors. We do notice a lower participation of aged minorities and participants with dementia, revealing an opportunity for targeted engagement. Our results indicate that targeting hypertension should be a priority for risk factor modifications to reduce dementia incidence.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Salud Poblacional , Humanos , Estados Unidos/epidemiología , Preescolar , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Estudios Transversales , Hipertensión/complicaciones , Factores de Riesgo , Estudios de Cohortes
3.
JAMIA Open ; 5(3): ooac057, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36313969

RESUMEN

Objective: The goal of this study was to investigate the relationship between comorbidities and ethnic health disparities in a diverse, cosmopolitan population. Materials and Methods: We used the UK Biobank (UKB), a large progressive cohort study of the UK population. Study participants self-identified with 1 of 5 ethnic groups and participant comorbidities were characterized using the 31 disease categories captured by the Elixhauser Comorbidity Index. Ethnic disparities in comorbidities were quantified as the extent to which disease prevalence within categories varies across ethnic groups and the extent to which pairs of comorbidities co-occur within ethnic groups. Disease-risk factor comorbidity pairs were identified where one comorbidity is known to be a risk factor for a co-occurring comorbidity. Results: The Asian ethnic group shows the greatest average number of comorbidities, followed by the Black and then White groups. The Chinese group shows the lowest average number of comorbidities. Comorbidity prevalence varies significantly among the ethnic groups for almost all disease categories, with diabetes and hypertension showing the largest differences across groups. Diabetes and hypertension both show ethnic-specific comorbidities that may contribute to the observed disease prevalence disparities. Discussion: These results underscore the extent to which comorbidities vary among ethnic groups and reveal group-specific disease comorbidities that may underlie ethnic health disparities. Conclusion: The study of comorbidity distributions across ethnic groups can be used to inform targeted group-specific interventions to reduce ethnic health disparities.

4.
Med Res Arch ; 10(9)2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36304842

RESUMEN

Fifty years ago, Richard Lewontin found that the vast majority of human genetic variation falls within (~85%) rather than between (~15%) racial groups. This result has been replicated numerous times since and is widely taken to support the notion that genetic differences between racial groups are trivial and thus irrelevant for clinical decision-making. The aim of this study was to consider how the apportionment of pharmacogenomic variation within and between racial and ethnic groups relates to risk disparities for adverse drug reactions. We confirmed that the majority of pharmacogenomic variation falls within (97.3%) rather than between (2.78%) the three largest racial and ethnic groups in the United States: Black, Hispanic, and White. Nevertheless, pharmacogenomic variants showing far greater within than between-group variation can have high predictive value for adverse drug reactions, particularly for minority racial and ethnic groups. We predicted excess adverse drug reactions for minority Black and Hispanic groups, compared to the majority White group, and considered these results in light of the apportionment of genetic variation within and between groups. For 85% within and 15% between group variation, there are 700 excess adverse drug reactions per 1,000 patients predicted for a recessive effect model and 300 for a dominant model. We found high numbers of predicted Black and Hispanic excess adverse drug reactions for widely prescribed platinum chemotherapy compounds, such as cisplatin and oxaliplatin, as well as controlled narcotics, including fentanyl and tramadol. Our results indicate that race and ethnicity, while imprecise proxies for genetic diversity, correlate with patterns of pharmacogenomic variation in a way that is clearly relevant to medical treatment decisions. The effects of this variation is particularly pronounced for Black and Hispanic minority groups, owing to genetic differences from the majority White group. Treatment decisions that are made based on (assumed) White pharmacogenomic variant frequencies can be harmful for minority groups. Ignoring clinically relevant genetic differences among racial and ethnic groups, however well-intentioned, will exacerbate rather than ameliorate health disparities.

5.
Methods Mol Biol ; 2547: 595-609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36068478

RESUMEN

Genetic ancestry inference can be used to stratify patient cohorts and to model pharmacogenomic variation within and between populations. We provide a detailed guide to genetic ancestry inference using genome-wide genetic variant datasets, with an emphasis on two widely used techniques: principal components analysis (PCA) and ADMIXTURE analysis. PCA can be used for patient stratification and categorical ancestry inference, whereas ADMIXTURE is used to characterize genetic ancestry as a continuous variable. Visualization methods are critical for the interpretation of genetic ancestry inference methods, and we provide instructions for how the results of PCA and ADMIXTURE can be effectively visualized.


Asunto(s)
Técnicas Genéticas , Farmacogenética , Genética de Población , Humanos , Polimorfismo de Nucleótido Simple , Grupos de Población/genética , Análisis de Componente Principal
6.
Gene ; 837: 146709, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35772650

RESUMEN

The inclusion of ethnicity in equations for estimating the glomerular filtration rate (eGFR) from serum creatinine levels has been challenged since ethnicity is socially defined and therefore a poor proxy for biological differences. We hypothesized that genetic ancestry (GA) would be more strongly associated with creatinine levels among healthy individuals than self-identified ethnicity. We studied a diverse cohort of 35,590 participants characterized as part of the UK Biobank, grouped by self-reported ethnicity: Black, East Asian, Mixed, Other, South Asian, and White. We used multivariable modeling to test for associations between ethnicity, GA, socioeconomic deprivation, and serum creatinine levels, including covariates for age, sex, height, and body mass index. Model fit comparisons and relative importance analysis were used to compare the effects of ethnicity and GA on creatinine levels. Black ethnicity shows a positive effect on participant serum creatinine levels (ß = 9.36 ± 0.38), whereas East Asian (ß = -1.80 ± 0.66) and South Asian (ß = -0.28 ± 0.36) ethnicity show negative effects on creatinine. Male sex (ß = 17.69 ± 0.34) and height (ß = 0.13 ± 0.02) also show high positive associations with creatinine levels, while socioeconomic deprivation (ß = -0.04 ± 0.04) shows no significant association. African ancestry has the highest association (ß = 13.81 ± 0.52) with creatinine levels. Overall, GA (9.06%) explains significantly more of the variation in creatinine levels than ethnicity (4.96%), with African ancestry (6.36%) alone explaining more of the variation than ethnicity. We found that GA explains more of the variation in serum creatinine levels than socioeconomic deprivation, suggesting the possibility that ethnic differences in creatinine are shaped by genetic rather than social factors.


Asunto(s)
Pueblo Asiatico , Etnicidad , Pueblo Asiatico/genética , Creatinina , Etnicidad/genética , Tasa de Filtración Glomerular/genética , Humanos , Masculino , Factores Socioeconómicos
7.
Cancer Res ; 82(7): 1222-1233, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35064017

RESUMEN

While overall cancer mortality has steadily decreased in recent decades, cancer health disparities among racial and ethnic population groups persist. Here we studied the relationship between cancer survival disparities (CSD), genetic ancestry (GA), and tumor molecular signatures across 33 cancers in a cohort of 9,818 patients. GA correlated with race and ethnicity but showed observable differences in effects on CSD, with significant associations identified in four cancer types: breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSCC), kidney renal clear cell carcinoma (KIRC), and skin cutaneous carcinoma (SKCM). Differential gene expression and methylation between ancestry groups associated cancer-related genes with CSD, of which, seven protein-coding genes [progestin and adipoQ receptor family member 6 (PAQR6), Lck-interacting transmembrane adaptor 1 (LIME1), Sin3A-associated protein 25 (SAP25), MAX dimerization protein 3 (MXD3), coiled-coil glutamate rich protein 2 (CCER2), refilin A (RFLNA), and cathepsin W (CTSW)] significantly interacted with GA and exacerbated observed survival disparities. These findings indicated that regulatory changes mediated by epigenetic mechanisms have a greater contribution to CSD than population-specific mutations. Overall, we uncovered various molecular mechanisms through which GA might impact CSD, revealing potential population-specific therapeutic targets for groups disproportionately burdened by cancer. SIGNIFICANCE: This large-cohort, multicancer study identifies four cancer types with cancer survival disparities and seven cancer-related genes that interact with genetic ancestry and contribute to disparities.


Asunto(s)
Carcinoma de Células Renales , Neoplasias de Cabeza y Cuello , Neoplasias Renales , Regulación Neoplásica de la Expresión Génica , Humanos , Oncogenes , Análisis de Supervivencia
9.
Front Genet ; 12: 738485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733313

RESUMEN

C-reactive protein (CRP) is a routinely measured blood biomarker for inflammation. Elevated levels of circulating CRP are associated with response to infection, risk for a number of complex common diseases, and psychosocial stress. The objective of this study was to compare the contributions of genetic ancestry, socioenvironmental factors, and inflammation-related health conditions to ethnic differences in C-reactive protein levels. We used multivariable regression to compare CRP blood serum levels between Black and White ethnic groups from the United Kingdom Biobank (UKBB) prospective cohort study. CRP serum levels are significantly associated with ethnicity in an age and sex adjusted model. Study participants who identify as Black have higher average CRP than those who identify as White, CRP increases with age, and females have higher average CRP than males. Ethnicity and sex show a significant interaction effect on CRP. Black females have higher average CRP levels than White females, whereas White males have higher average CRP than Black males. Significant associations between CRP, ethnicity, and genetic ancestry are almost completely attenuated in a fully adjusted model that includes socioenvironmental factors and inflammation-related health conditions. BMI, smoking, and socioeconomic deprivation all have high relative effects on CRP. These results indicate that socioenvironmental factors contribute more to CRP ethnic differences than genetics. Differences in CRP are associated with ethnic disparities for a number of chronic diseases, including type 2 diabetes, essential hypertension, sarcoidosis, and lupus erythematosus. Our results indicate that ethnic differences in CRP are linked to both socioenvironmental factors and numerous ethnic health disparities.

10.
Front Genet ; 12: 690366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650589

RESUMEN

Currently, the vast majority of genomic research cohorts are made up of participants with European ancestry. Genomic medicine will only reach its full potential when genomic studies become more broadly representative of global populations. We are working to support the establishment of genomic medicine in developing countries in Latin America via studies of ethnically and ancestrally diverse Colombian populations. The goal of this study was to analyze the effect of ethnicity and genetic ancestry on observed disease prevalence and predicted disease risk in Colombia. Population distributions of Colombia's three major ethnic groups - Mestizo, Afro-Colombian, and Indigenous - were compared to disease prevalence and socioeconomic indicators. Indigenous and Mestizo ethnicity show the highest correlations with disease prevalence, whereas the effect of Afro-Colombian ethnicity is substantially lower. Mestizo ethnicity is mostly negatively correlated with six high-impact health conditions and positively correlated with seven of eight common cancers; Indigenous ethnicity shows the opposite effect. Malaria prevalence in particular is strongly correlated with ethnicity. Disease prevalence co-varies across geographic regions, consistent with the regional distribution of ethnic groups. Ethnicity is also correlated with regional variation in human development, partially explaining the observed differences in disease prevalence. Patterns of genetic ancestry and admixture for a cohort of 624 individuals from Medellín were compared to disease risk inferred via polygenic risk scores (PRS). African genetic ancestry is most strongly correlated with predicted disease risk, whereas European and Native American ancestry show weaker effects. African ancestry is mostly positively correlated with disease risk, and European ancestry is mostly negatively correlated. The relationships between ethnicity and disease prevalence do not show an overall correspondence with the relationships between ancestry and disease risk. We discuss possible reasons for the divergent health effects of ethnicity and ancestry as well as the implication of our results for the development of precision medicine in Colombia.

11.
medRxiv ; 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34611667

RESUMEN

Ethnic minorities in developed countries suffer a disproportionately high burden of COVID-19 morbidity and mortality, and COVID-19 ethnic disparities have been attributed to social determinants of health. Vitamin D has been proposed as a modifiable risk factor that could mitigate COVID-19 health disparities. We investigated the relationship between vitamin D and COVID-19 susceptibility and severity using the UK Biobank, a large progressive cohort study of the United Kingdom population. Structural equation modelling was used to evaluate the ability of vitamin D, socioeconomic deprivation, and other known risk factors to mediate COVID-19 ethnic health disparities. Asian ethnicity is associated with higher COVID-19 susceptibility, compared to the majority White population, and Asian and Black ethnicity are both associated with higher COVID-19 severity. Socioeconomic deprivation mediates all three ethnic disparities and shows the highest overall signal of mediation for any COVID-19 risk factor. Vitamin supplements, including vitamin D, mediate the Asian disparity in COVID-19 susceptibility, and serum 25-hydroxyvitamin D (calcifediol) levels mediate Asian and Black COVID-19 severity disparities. Several measures of overall health also mediate COVID-19 ethnic disparities, underscoring the importance of comorbidities. Our results support ethnic minorities' use of vitamin D as both a prophylactic and a supplemental therapeutic for COVID-19.

12.
EClinicalMedicine ; 37: 100960, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386746

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a complex common disease that disproportionately impacts minority ethnic groups in the United Kingdom (UK). Socioeconomic deprivation (SED) is widely considered as a potential explanation for T2D ethnic disparities in the UK, whereas the effect of genetic ancestry (GA) on such disparities has yet to be studied. METHODS: We leveraged data from the UK Biobank prospective cohort study, with participants enrolled between 2006 and 2010, to model the relationship between SED (Townsend index), GA (clustering principal components of whole genome genotype data), and T2D status (ICD-10 codes) across the three largest ethnic groups in the UK - Asian, Black, and White - using multivariable logistic regression. FINDINGS: The Asian group shows the highest T2D prevalence (17·9%), followed by the Black (11·7%) and White (5·5%) ethnic groups. We find that both SED (OR: 1·11, 95% CI: 1·10-1·11) and non-European GA (OR South Asian versus European: 4·37, 95% CI: 4·10-4·66; OR African versus European: 2·52, 95% CI: 2·23-2·85) are significantly associated with the observed T2D disparities. GA and SED show significant interaction effects on T2D, with SED being a relatively greater risk factor for T2D for individuals with South Asian and African ancestry, compared to those with European ancestry. INTERPRETATION: The significant interactions between SED and GA underscore how the effects of environmental risk factors can differ among ancestry groups, suggesting the need for group-specific interventions. FUNDING: This work was supported by the National Institutes of Health (NIH) Distinguished Scholars Program (DSP) to LMR and the Division of Intramural Research (DIR) of the National Institute on Minority Health and Health Disparities (NIMHD) at NIH.

13.
HGG Adv ; 2(4): 100050, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-35047841

RESUMEN

We investigated the ancestral origins of four Ecuadorian ethnic groups-Afro-Ecuadorian, Mestizo, Montubio, and the Indigenous Tsáchila-in an effort to gain insight on the relationship between ancestry, culture, and the formation of ethnic identities in Latin America. The observed patterns of genetic ancestry are largely concordant with ethnic identities and historical records of conquest and colonization in Ecuador. Nevertheless, a number of exceptional findings highlight the complex relationship between genetic ancestry and ethnicity in Ecuador. Afro-Ecuadorians show far less African ancestry, and the highest levels of Native American ancestry, seen for any Afro-descendant population in the Americas. Mestizos in Ecuador show high levels of Native American ancestry, with substantially less European ancestry, despite the relatively low Indigenous population in the country. The recently recognized Montubio ethnic group is highly admixed, with substantial contributions from all three continental ancestries. The Tsáchila show two distinct ancestry subgroups, with most individuals showing almost exclusively Native American ancestry and a smaller group showing a Mestizo characteristic pattern. Considered together with historical data and sociological studies, our results indicate the extent to which ancestry and culture interact, often in unexpected ways, to shape ethnic identity in Ecuador.

14.
BMC Biol ; 18(1): 140, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33050895

RESUMEN

BACKGROUND: Pharmacogenomic (PGx) variants mediate how individuals respond to medication, and response differences among racial/ethnic groups have been attributed to patterns of PGx diversity. We hypothesized that genetic ancestry (GA) would provide higher resolution for stratifying PGx risk, since it serves as a more reliable surrogate for genetic diversity than self-identified race/ethnicity (SIRE), which includes a substantial social component. We analyzed a cohort of 8628 individuals from the United States (US), for whom we had both SIRE information and whole genome genotypes, with a focus on the three largest SIRE groups in the US: White, Black (African-American), and Hispanic (Latino). Our approach to the question of PGx risk stratification entailed the integration of two distinct methodologies: population genetics and evidence-based medicine. This integrated approach allowed us to consider the clinical implications for the observed patterns of PGx variation found within and between population groups. RESULTS: Whole genome genotypes were used to characterize individuals' continental ancestry fractions-European, African, and Native American-and individuals were grouped according to their GA profiles. SIRE and GA groups were found to be highly concordant. Continental ancestry predicts individuals' SIRE with > 96% accuracy, and accordingly, GA provides only a marginal increase in resolution for PGx risk stratification. In light of the concordance between SIRE and GA, taken together with the fact that information on SIRE is readily available to clinicians, we evaluated PGx variation between SIRE groups to explore the potential clinical utility of race and ethnicity. PGx variants are highly diverged compared to the genomic background; 82 variants show significant frequency differences among SIRE groups, and genome-wide patterns of PGx variation are almost entirely concordant with SIRE. The vast majority of PGx variation is found within rather than between groups, a well-established fact for almost all genetic variants, which is often taken to argue against the clinical utility of population stratification. Nevertheless, analysis of highly differentiated PGx variants illustrates how SIRE partitions PGx variation based on groups' characteristic ancestry patterns. These cases underscore the extent to which SIRE carries clinically valuable information for stratifying PGx risk among populations, albeit with less utility for predicting individual-level PGx alleles (genotypes), supporting the concept of population pharmacogenomics. CONCLUSIONS: Perhaps most interestingly, we show that individuals who identify as Black or Hispanic stand to gain far more from the consideration of race/ethnicity in treatment decisions than individuals from the majority White population.


Asunto(s)
Etnicidad/genética , Genoma Humano , Genotipo , Medición de Riesgo , Genética de Población , Humanos , Farmacogenética , Estados Unidos
15.
Front Genet ; 10: 241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967898

RESUMEN

While genomic approaches to precision medicine hold great promise, they remain prohibitively expensive for developing countries. The precision public health paradigm, whereby healthcare decisions are made at the level of populations as opposed to individuals, provides one way for the genomics revolution to directly impact health outcomes in the developing world. Genomic approaches to precision public health require a deep understanding of local population genomics, which is still missing for many developing countries. We are investigating the population genomics of genetic variants that mediate drug response in an effort to inform healthcare decisions in Colombia. Our work focuses on two neighboring populations with distinct ancestry profiles: Antioquia and Chocó. Antioquia has primarily European genetic ancestry followed by Native American and African components, whereas Chocó shows mainly African ancestry with lower levels of Native American and European admixture. We performed a survey of the global distribution of pharmacogenomic variants followed by a more focused study of pharmacogenomic allele frequency differences between the two Colombian populations. Worldwide, we found pharmacogenomic variants to have both unusually high minor allele frequencies and high levels of population differentiation. A number of these pharmacogenomic variants also show anomalous effect allele frequencies within and between the two Colombian populations, and these differences were found to be associated with their distinct genetic ancestry profiles. For example, the C allele of the single nucleotide polymorphism (SNP) rs4149056 [Solute Carrier Organic Anion Transporter Family Member 1B1 (SLCO1B1)∗5], which is associated with an increased risk of toxicity to a commonly prescribed statin, is found at relatively high frequency in Antioquia and is associated with European ancestry. In addition to pharmacogenomic alleles related to increased toxicity risk, we also have evidence that alleles related to dosage and metabolism have large frequency differences between the two populations, which are associated with their specific ancestries. Using these findings, we have developed and validated an inexpensive allele-specific PCR assay to test for the presence of such population-enriched pharmacogenomic SNPs in Colombia. These results serve as an example of how population-centered approaches to pharmacogenomics can help to realize the promise of precision medicine in resource-limited settings.

16.
OMICS ; 20(5): 310-24, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27195968

RESUMEN

The development of drug-resistant pathogenic bacteria poses challenges to global health for their treatment and control. In this context, stress response enables bacterial populations to survive extreme perturbations in the environment but remains poorly understood. Specific modules are activated for unique stressors with few recognized global regulators. The phenomenon of cross-stress protection strongly suggests the presence of central proteins that control the diverse stress responses. In this work, Escherichia coli was used to model the bacterial stress response. A Protein-Protein Interaction Network was generated by integrating differentially expressed genes in eight stress conditions of pH, temperature, and antibiotics with relevant gene ontology terms. Topological analysis identified 24 central proteins. The well-documented role of 16 central proteins in stress indicates central control of the response, while the remaining eight proteins may have a novel role in stress response. Cluster analysis of the generated network implicated RNA binding, flagellar assembly, ABC transporters, and DNA repair as important processes during response to stress. Pathway analysis showed crosstalk of Two Component Systems with metabolic processes, oxidative phosphorylation, and ABC transporters. The results were further validated by analysis of an independent cross-stress protection dataset. This study also reports on the ways in which bacterial stress response can progress to biofilm formation. In conclusion, we suggest that drug targets or pathways disrupting bacterial stress responses can potentially be exploited to combat antibiotic tolerance and multidrug resistance in the future.


Asunto(s)
Antibacterianos/farmacología , Bacterias , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana , Redes Reguladoras de Genes , Estrés Fisiológico , Análisis por Conglomerados , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Concentración de Iones de Hidrógeno , Mapas de Interacción de Proteínas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...