Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 170-178, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38155534

RESUMEN

Characterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing treatment. To satisfy these requirements, we proposed a new method employing the sequential combination of two imaging modalities, i.e., microenergy-dispersive X-ray fluorescence (micro-XRF) and Raman micro-spectroscopy. The applicability of the developed method is tested by the quantitative analysis of cation composition in micrometer-sized carbonate grains on the surfaces of intact particles sampled directly from the asteroid Ryugu. The first step of micro-XRF imaging enabled a quick search for the sparsely scattered and micrometer-sized carbonates by the codistributions of Ca2+ and Mn2+ on the Mg2+- and Fe2+-rich phyllosilicate matrix. The following step of Raman micro-spectroscopy probed the carbonate grains and analyzed their cation composition (Ca2+, Mg2+, and Fe2+ + Mn2+) in a matrix effect-free manner via the systematic Raman shifts of the lattice modes. The carbonates were basically assigned to ferroan dolomite bearing a considerable amount of Fe2+ + Mn2+ at around 10 atom %. These results are in good accordance with the assignments reported by scanning electron microscopy-energy-dispersive X-ray spectroscopy, where the thin-sectioned and surface-polished Ryugu particles were applicable. The proposed method requires neither sectioning nor surface polishing; hence, it can be applied to the remote sensing apparatus on spacecrafts and planetary rovers. Furthermore, the non-invasive and matrix effect-free characterization will provide a reliable analytical tool for quantitative analysis of the elemental distribution on the samples with surface roughness and chemical heterogeneity at a micrometer scale, such as art paintings, traditional crafts with decorated shapes, as well as sands and rocks with complex morphologies in nature.

2.
Sci Adv ; 9(45): eadi7048, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939187

RESUMEN

Studies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform. This variation in Cr isotope ratios is most likely due to physicochemical fractionation between 54Cr-rich presolar nanoparticles and Cr-bearing secondary minerals at the millimeter-scale in the bulk samples, likely due to extensive aqueous alteration in their parent bodies that occurred [Formula: see text] after Solar System birth. In contrast, Ti isotopes were marginally affected by this process. Our results show that isotopic heterogeneities in asteroids are not all nebular or accretionary in nature but can also reflect element redistribution by water.

3.
Sci Adv ; 9(28): eadh1003, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450600

RESUMEN

Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration. The 5 to 10 times higher abundances of presolar SiC (~235 ppm), N-rich organic matter, organics with N isotopic anomalies (1.2%), and organics with C isotopic anomalies (0.2%) in the primitive clasts compared to bulk Ryugu suggest that the clasts formed in a unique part of the protoplanetary disk enriched in presolar materials. These clasts likely represent previously unsampled outer solar system material that accreted onto Ryugu after aqueous alteration ceased, consistent with Ryugu's rubble pile origin.


Asunto(s)
Carbono , Meteoroides , Carbono/análisis , Sistema Solar , Silicatos
4.
Science ; 379(6634): eabn7850, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35679354

RESUMEN

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples. The samples are mainly composed of materials similar to those of carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37° ± 10°C, about [Formula: see text] million (statistical) or [Formula: see text] million (systematic) years after the formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles that of the Sun's photosphere than other natural samples do.

5.
Sci Adv ; 8(50): eade2067, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525483

RESUMEN

The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16O-rich (associated with refractory inclusions) and 16O-poor (associated with chondrules). Both the 16O-rich and 16O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16O-rich to 16O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.

6.
Sci Adv ; 8(46): eadd8141, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36264823

RESUMEN

Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune.

7.
Prog Earth Planet Sci ; 8(1): 61, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790556

RESUMEN

We report on the mineralogy, petrography, and O and Al-Mg isotopic systematics of secondary mineralization in the metasomatically altered igneous Ca,Al-rich inclusions (CAIs) [compact type A (CTA), B1, B2, forsterite-bearing B (FoB), and C] from the CV3 carbonaceous chondrite Allende. This alteration affected mainly melilite, and to a lesser degree anorthite, and resulted in the formation of a variety of secondary minerals, including adrianite, Al-diopside, andradite, anorthite, calcite, celsian, clintonite, corundum, dmisteinbergite, ferroan olivine, ferroan monticellite, ferroan Al-diopside, forsterite, grossular, heazlewoodite, hedenbergite, hutcheonite, kushiroite, margarite, monticellite, Na-melilite, nepheline, pentlandite, pyrrhotite, sodalite, spinel, tilleyite, wadalite, and wollastonite. The secondary mineral assemblages are mainly defined by chemical compositions of the primary melilite replaced and elements introduced by an aqueous fluid. Gehlenitic melilite (Åk<35) in CTAs and mantles of B1s is mainly replaced by anorthite + grossular; clintonite, corundum, spinel, and Al-diopside are minor. Åkermanitic melilite (Åk35-90) in type B2s, FoBs, and cores of B1s is replaced by the grossular + monticellite + wollastonite, grossular + monticellite, and grossular + Al-diopside assemblages; forsterite, spinel, clintonite, and Na-melilite are minor. In type Cs, lacy melilite (åkermanitic melilite with rounded inclusions of anorthite) is pseudomorphically replaced by the grossular + forsterite + monticellite and grossular + Al-diopside assemblages; Na-melilite is minor. Primary and secondary anorthites in the peripheral portions of CAIs are replaced by nepheline, sodalite, and ferromagnesian olivine. Some CAIs contain voids and cracks filled by andradite, hedenbergite, wollastonite, ±sodalite, ±grossular, ±monticellite, ±tilleyite, and ±calcite. All CAIs studied are surrounded by Wark-Lovering rims, fine-grained matrix-like rims composed of lath-shaped ferroan olivine and abundant nepheline grains, and a layer of salite-hedenbergite pyroxenes + andradite + wollastonite. Grossular associating with monticellite, Al-diopside, and forsterite and replacing åkermanitic melilite (27Al/24Mg ~ 2) has high 27Al/24Mg ratios (30-100) and shows no resolvable excess of radiogenic 26Mg (26Mg*). The 27Al/24Mg ratios (7-10) and 26Mg* (2-3‰) in the nearly monomineralic grossular veins crosscutting gehlenitic melilite are similar to those of the host melilite and plot along a regression line with 26Al/27Al ratio of ~5×10-5. Oxygen isotopic compositions of secondary minerals in the most Type Bs measured in situ with the UH Cameca ims-1280 and matrix-matched standards plot along mass-dependent fractionation line with ∆17O of ~ -3±2‰ with δ18O ranging from ~0 to ~10‰. Primary melilite and anorthite in the host CAIs are similarly 16O-depleted, whereas spinel, forsterite, and most Al,Ti-diopside grains have 16O-rich compositions (∆17O ~ -25±2‰). Secondary grossular and forsterite in type Cs and type B1 CAI TS-34 show a range of ∆17O, from ~ -15 to ~ -1‰; the 16O-enriched compositions of grossular and forsterite plot along the carbonaceous chondrite anhydrous mineral line. The similar ranges of ∆17O and positions on the three-isotope oxygen diagram are observed for primary anorthite; melilite is generally 16O-depleted compared to anorthite (∆17O ~ -5 to -1±2‰); spinel and fassaite are 16O-rich (except very Ti-rich fassaite in TS-34 and CTA CAIs). We conclude that Allende CAIs experienced an open-system in situ metasomatic alteration at relatively high temperatures (200-250 °C) in the presence of CO2- and H2O-bearing fluid with ∆17O of ~ -3±2‰ followed by thermal metamorphism at ~ 500 °C on the CV chondrite parent asteroid. During the alteration, most elements were mobile: Si, Na, Cl, K, Fe, S, and Ni were introduced; Al, Ti, Mg, and Ba were locally mobilized; Ca and some Mg and Al were lost from the host inclusions. The alteration occurred after nearly complete decay of 26Al, >3 Ma after crystallization of CAIs with the canonical (26Al/27Al)0 of (5.25±0.02)×10-5; 26Mg* in grossular was inherited from the primary melilite and provide no chronological significance. Oxygen isotopic heterogeneity of primary minerals in the Allende CAIs at least partly is due to isotopic exchange with an aqueous fluid that largely affected melilite, anorthite, perovskite, Zr- and Sc-rich oxides and silicates, and possibly very Ti-rich fassaite. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40645-021-00437-4.

8.
Sci Adv ; 6(42)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33067241

RESUMEN

The Sun is 16O-enriched (Δ17O = -28.4 ± 3.6‰) relative to the terrestrial planets, asteroids, and chondrules (-7‰ < Δ17O < 3‰). Ca,Al-rich inclusions (CAIs), the oldest Solar System solids, approach the Sun's Δ17O. Ultraviolet CO self-shielding resulting in formation of 16O-rich CO and 17,18O-enriched water is the currently favored mechanism invoked to explain the observed range of Δ17O. However, the location of CO self-shielding (molecular cloud or protoplanetary disk) remains unknown. Here we show that CAIs with predominantly low (26Al/27Al)0, <5 × 10-6, exhibit a large inter-CAI range of Δ17O, from -40‰ to -5‰. In contrast, CAIs with the canonical (26Al/27Al)0 of ~5 × 10-5 from unmetamorphosed carbonaceous chondrites have a limited range of Δ17O, -24 ± 2‰. Because CAIs with low (26Al/27Al)0 are thought to have predated the canonical CAIs and formed within first 10,000-20,000 years of the Solar System evolution, these observations suggest oxygen isotopic heterogeneity in the early solar system was inherited from the protosolar molecular cloud.

9.
Meteorit Planet Sci ; 55(6): 1371-1381, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32848353

RESUMEN

Filamentary enstatite crystals are found in interplanetary dust particles (IDPs) of likely cometary origin but are very rare or absent in meteorites. Crystallographic characteristics of filamentary enstatites indicate that they condensed directly from vapor. We measured the O isotopic composition of an enstatite ribbon from a giant cluster IDP to be δ18O = 25 ± 55, δ17O = -19 ± 129, Δ17O = -32 ± 134 (2σ errors), which is inconsistent at the 2σ level with the composition of the Sun inferred from the Genesis solar wind measurements. The particle's O isotopic composition, consistent with the terrestrial composition, implies that it condensed from a gas of nonsolar O isotopic composition, possibly as a result of vaporization of disk region enriched in 16O-depleted solids. The relative scarcity of filamentary enstatite in asteroids compared to comets implies either that this crystal condensed from dust vaporized in situ in the outer solar system where comets formed or it condensed in the inner solar system and was subsequently transported outward to the comet-forming region.

10.
Meteorit Planet Sci ; 55(2): 326-351, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32256027

RESUMEN

NASA's Genesis mission was flown to capture samples of the solar wind and return them to the Earth for measurement. The purpose of the mission was to determine the chemical and isotopic composition of the Sun with significantly better precision than known before. Abundance data are now available for noble gases, magnesium, sodium, calcium, potassium, aluminum, chromium, iron, and other elements. Here, we report abundance data for hydrogen in four solar wind regimes collected by the Genesis mission (bulk solar wind, interstream low-energy wind, coronal hole high-energy wind, and coronal mass ejections). The mission was not designed to collect hydrogen, and in order to measure it, we had to overcome a variety of technical problems, as described herein. The relative hydrogen fluences among the four regimes should be accurate to better than ±5-6%, and the absolute fluences should be accurate to ±10%. We use the data to investigate elemental fractionations due to the first ionization potential during acceleration of the solar wind. We also use our data, combined with regime data for neon and argon, to estimate the solar neon and argon abundances, elements that cannot be measured spectroscopically in the solar photosphere.

11.
Geochim Cosmochim Acta ; 271: 116-131, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32214433

RESUMEN

We report the structure, chemical composition, O, Al-Mg, He, and Ne isotope systematics of an interplanetary dust particle, "Manchanito". These analyses indicate that Manchanito solidified as refractory glass (with oxidized Fe but reduced Ti) in a chondrule-like formation environment more than 3.2 Myr after CAIs, after which it was exposed to Q-like noble gases in the dissipating solar nebula. Manchanito's He and Ne isotopic composition and concentrations are similar to those measured in samples of comet Wild 2, from which we infer that Manchanito's parent body was a comet. We propose that after formation and exposure to Q-like gases, Manchanito was transported to the outer Solar System where it came into contact with organics and volatile ices on its cometary parent body. Manchanito provides additional evidence that cometary solids have been subjected to energetic processing and large-scale transport in a wide range of environments in the Solar System.

12.
Artículo en Inglés | MEDLINE | ID: mdl-30930966

RESUMEN

We report on the mineralogy, petrography, and oxygen isotopic compositions of primary olivine and plagioclase/feldspathic mesostases in chondrules and of secondary magnetite and fayalite in chondrules and matrix of an oxidized Bali-like CV3.1 carbonaceous chondrite, Kaba. In this meteorite, compositionally nearly pure fayalite (Fa98-100) associates with hedenbergite (Fs~50Wo~50), magnetite, and Fe,Ni-sulfides. There are several textural occurrences of this mineral paragenesis: (i) coarse-grained intergrowths in interchondrule matrix, (ii) veins starting at the opaque nodules in the peripheries of type I chondrules and crosscutting fine-grained rims around them, and (iii) rims overgrowing olivine of type I and type II chondrule fragments. Oxygen isotopic compositions of fayalite and magnetite are in disequilibrium with chondrule olivines. On a three-isotope oxygen diagram, δ17O vs. δ18O, compositions of olivine plot along primitive chondrule minerals (PCM) line having a slope of ~1.0; deviations from the terrestrial fractionation line, Δ17O = δ17O - 0.52 × Î´18O, range from ~-8‰ to ~-5‰. In contrast, fayalite and magnetite plot along mass-dependent fractionation line with a slope of ~0.5; their δ18O values range from -1 to ~+9‰; Δ17O is nearly constant (average ± 2SE = -1.5±1‰). Oxygen isotopic compositions of chondrule plagioclase and feldspathic mesostases are in disequilibrium with chondrule olivines: they deviate to the right from the PCM line by ~12‰ and plot close to the mass-dependent fractionation line defined by fayalite and magnetite. Based on the mineralogy, petrography, oxygen isotopic compositions of fayalite and magnetite, and the previously published thermodynamic analysis of the fayalite-bearing assemblages in ordinary and carbonaceous chondrites, we conclude that Kaba fayalite and magnetite formed during aqueous fluid-rock interaction at low water/rock ratio (0.1-0.2) and elevated temperatures (~200-300°C) on the CV chondrite parent asteroid. The Δ17O values of Kaba fayalite and magnetite (-1.5±1‰) correspond to Δ17O of aqueous fluid that operated on the CV chondrite parent asteroid and resulted in its alteration. Plagioclase and feldspathic mesostases in Kaba chondrules experienced postcrystallization oxygen isotopic exchange with this 16O-depleted fluid; olivine grains retained their original compositions acquired during chondrule melts crystallization. The inferred oxygen isotopic exchange in Kaba chondrules appear to have not affected their Al-Mg isotope systematics.

13.
Proc Natl Acad Sci U S A ; 115(29): 7497-7502, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967181

RESUMEN

Calcium-aluminum-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs), a refractory component of chondritic meteorites, formed in a high-temperature region of the protoplanetary disk characterized by approximately solar chemical and oxygen isotopic (Δ17O ∼ -24‰) compositions, most likely near the protosun. Here we describe a 16O-rich (Δ17O ∼ -22 ± 2‰) AOA from the carbonaceous Renazzo-type (CR) chondrite Yamato-793261 containing both (i) an ultrarefractory CAI and (ii) forsterite, low-Ca pyroxene, and silica, indicating formation by gas-solid reactions over a wide temperature range from ∼1,800 to ∼1,150 K. This AOA provides direct evidence for gas-solid condensation of silica in a CAI/AOA-forming region. In a gas of solar composition, the Mg/Si ratio exceeds 1, and, therefore, silica is not predicted to condense under equilibrium conditions, suggesting that the AOA formed in a parcel of gas with fractionated Mg/Si ratio, most likely due to condensation of forsterite grains. Thermodynamic modeling suggests that silica formed by condensation of nebular gas depleted by ∼10× in H and He that cooled at 50 K/hour at total pressure of 10-4 bar. Condensation of silica from a hot, chemically fractionated gas could explain the origin of silica identified from infrared spectroscopy of remote protostellar disks.

14.
Proc Natl Acad Sci U S A ; 113(8): 2011-6, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858438

RESUMEN

The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.

15.
Science ; 350(6262): 795-7, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26564850

RESUMEN

The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth's oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth's original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (δD more negative than -218 per mil). Such strongly negative values indicate the existence of a component within Earth's interior that inherited its D/H ratio directly from the protosolar nebula.

16.
Nat Commun ; 6: 7444, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26100451

RESUMEN

Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric (53)Mn-(53)Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first (53)Mn-(53)Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and (53)Mn-(53)Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ∼1.8-2.5 Myr after CAIs.

17.
PLoS One ; 8(6): e64624, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762242

RESUMEN

We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.


Asunto(s)
Silicatos de Aluminio/química , Boro/análisis , Medio Ambiente Extraterrestre/química , Marte , Arcilla , Planeta Tierra , Exobiología , Geología , Origen de la Vida
18.
Proc Natl Acad Sci U S A ; 110(22): 8819-23, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23671077

RESUMEN

Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock.


Asunto(s)
Aluminio/química , Evolución Planetaria , Meteoroides , Radioisótopos/química , Datación Radiométrica/métodos , Sistema Solar/química , Fraccionamiento Químico , Microanálisis por Sonda Electrónica , Hafnio/química , Isótopos/química , Oxígeno/química , Tungsteno/química
19.
Science ; 338(6114): 1583-7, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23258889

RESUMEN

Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

20.
Science ; 336(6087): 1426-9, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22604725

RESUMEN

The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...