Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 9(15): 8429-8440, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31410251

RESUMEN

Ocean currents are an important driver of evolution for sea-dispersed plants, enabling them to maintain reciprocal gene flow via sea-dispersed diaspores and obtain wide distribution ranges. Although geographic barriers are known to be the primary factors shaping present genetic structure of sea-dispersed plants, cryptic barriers which form clear genetic structure within oceanic regions are poorly understood. To test the presence of a cryptic barrier, we conducted a phylogeographic study together with past demographic inference for a widespread sea-dispersed plant, Vigna marina, using 308 individuals collected from the entire Indo-West Pacific (IWP) region. Chloroplast DNA variation showed strong genetic structure that separated populations into three groups: North Pacific (NP), South Pacific (SP) and Indian Ocean (IN) (F'CT among groups = 0.954-1.000). According to the Approximate Bayesian computation inference, splitting time between NP and SP was approximately 20,200 years (95%HPD, 4,530-95,400) before present. Moreover, a signal of recent population expansion was detected in the NP group. This study clearly showed the presence of a cryptic barrier in the West Pacific region of the distributional range of V. marina. The locations of the cryptic barrier observed in V. marina corresponded to the genetic breaks found in other plants, suggesting the presence of a common cryptic barrier for sea-dispersed plants. Demographic inference suggested that genetic structure related to this cryptic barrier has been present since the last glacial maximum and may reflect patterns of past population expansion from refugia.

2.
PLoS One ; 9(7): e102133, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25013956

RESUMEN

Noise-induced hearing loss is at least in part due to disruption of endocochlear potential, which is maintained by various K(+) transport apparatuses including Na(+), K(+)-ATPase and gap junction-mediated intercellular communication in the lateral wall structures. In this study, we examined the changes in the ion-trafficking-related proteins in the spiral ligament fibrocytes (SLFs) following in vivo acoustic overstimulation or in vitro exposure of cultured SLFs to 4-hydroxy-2-nonenal, which is a mediator of oxidative stress. Connexin (Cx)26 and Cx30 were ubiquitously expressed throughout the spiral ligament, whereas Na(+), K(+)-ATPase α1 was predominantly detected in the stria vascularis and spiral prominence (type 2 SLFs). One-hour exposure of mice to 8 kHz octave band noise at a 110 dB sound pressure level produced an immediate and prolonged decrease in the Cx26 expression level and in Na+, K(+)-ATPase activity, as well as a delayed decrease in Cx30 expression in the SLFs. The noise-induced hearing loss and decrease in the Cx26 protein level and Na(+), K(+)-ATPase activity were abolished by a systemic treatment with a free radical-scavenging agent, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, or with a nitric oxide synthase inhibitor, N(ω)-nitro-L-arginine methyl ester hydrochloride. In vitro exposure of SLFs in primary culture to 4-hydroxy-2-nonenal produced a decrease in the protein levels of Cx26 and Na(+), K(+)-ATPase α1, as well as Na(+), K(+)-ATPase activity, and also resulted in dysfunction of the intercellular communication between the SLFs. Taken together, our data suggest that disruption of the ion-trafficking system in the cochlear SLFs is caused by the decrease in Cxs level and Na(+), K(+)-ATPase activity, and at least in part involved in permanent hearing loss induced by intense noise. Oxidative stress-mediated products might contribute to the decrease in Cxs content and Na(+), K(+)-ATPase activity in the cochlear lateral wall structures.


Asunto(s)
Aldehídos/farmacología , Depuradores de Radicales Libres/farmacología , Pérdida Auditiva Provocada por Ruido/prevención & control , NG-Nitroarginina Metil Éster/farmacología , Piperidinas/farmacología , Ligamento Espiral de la Cóclea/metabolismo , Aldehídos/antagonistas & inhibidores , Animales , Comunicación Celular/efectos de los fármacos , Conexina 26 , Conexina 30 , Conexinas/antagonistas & inhibidores , Conexinas/genética , Conexinas/metabolismo , Radicales Libres/antagonistas & inhibidores , Radicales Libres/metabolismo , Regulación de la Expresión Génica , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/genética , Pérdida Auditiva Provocada por Ruido/metabolismo , Transporte Iónico/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Ruido/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Cultivo Primario de Células , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ligamento Espiral de la Cóclea/efectos de los fármacos , Ligamento Espiral de la Cóclea/patología , Estría Vascular/efectos de los fármacos , Estría Vascular/metabolismo , Estría Vascular/patología
3.
Biol Pharm Bull ; 34(12): 1856-63, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22130242

RESUMEN

The organotin trimethyltin (TMT) is well known to cause neuronal degeneration in the hippocampal dentate gyrus of mice. The first purpose of the present study was to examine whether the cyclooxygenase (COX) inhibitor indomethacin could ameliorate neuronal degeneration in the dentate gyrus of mice following TMT treatment in vivo. The systemic injection into mice of TMT at 2.8 mg/kg produced activation of endogenous caspase-3 and calpain, enhanced the gene expression of COX-1 and COX-2, activated microglial cells, and caused the formation of the lipid peroxidation product 4-hydroxynonenal in the hippocampus. Given at 12-h post-TMT treatment, the systemic injection of indomethacin (5 or 10 mg/kg, subcutaneously) significantly decreased the TMT-induced damage to neurons having active caspase-3 and single-stranded DNA in the dentate granule cell layer of the hippocampus. The results of the α-Fodrin degradation test revealed that the post-treatment with indomethacin was effective in attenuating TMT-induced activation of endogenous caspases and calpain in the hippocampus. In TMT-treated animals, interestingly, the post-treatment with indomethacin produced not only activation of microglial cells in the dentate gyrus but also the formation of 4-hydroxynonenal in the dentate granule cell layer. Taken together, our data suggest that COX inhibition by indomethacin ameliorated TMT-induced neuronal degeneration in the dentate gyrus by attenuating intensive oxidative stress.


Asunto(s)
Inhibidores de la Ciclooxigenasa/uso terapéutico , Giro Dentado/efectos de los fármacos , Indometacina/uso terapéutico , Microglía/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Aldehídos/metabolismo , Animales , Caspasa 3/metabolismo , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Giro Dentado/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Indometacina/farmacología , Masculino , Ratones , Microglía/citología , Microglía/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Compuestos de Trimetilestaño/toxicidad
4.
Neurochem Int ; 59(6): 812-20, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21906645

RESUMEN

Inner ear disorders are known to be elicited by mitochondrial dysfunction, which decreases the ATP level in the inner ear. 5'-AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by metabolic stress and by an increase in the AMP/ATP ratio. To elucidate the involvement of AMPK-derived signals in noise-induced hearing loss, we investigated whether in vivo acoustic overstimulation would activate AMPK in the cochlea of mice. Std-ddY mice were exposed to 8kHz octave band noise at a 90-, 110- or 120-dB sound pressure level (SPL) for 2h. Exposure to the noise at 110 or 120dB SPL produced outer hair cell death in the organ of Corti and permanent hearing loss. Exposure to the noise at 120-dB SPL elevated the level of the phospho-AMPK α-subunit (p-AMPKα), without affecting the protein level of this subunit, immediately and at 12-h post-exposure in the lateral wall structures including the spiral ligament and stria vascularis. In the hair cells and spiral ganglion cells, no marked change in the level of p-AMPKα was observed at any time post-exposure. The level of phospho-c-Jun N-terminal kinase (p-JNK) was increased in the lateral wall structures at 2- to 4-h post-exposure at 120dB SPL. Noise exposure significantly, but temporarily, decreased the ATP level in the spiral ligament, in an SPL-dependent manner at 110dB and above. Likewise, elevation of p-AMPKα and p-JNK levels was also observed in the lateral wall structures post-exposure to noise at an SPL of 110dB and above. Taken together, our data suggest that AMPK and JNK were activated by ATP depletion in the cochlear spiral ligament prior to permanent hearing loss induced by in vivo acoustic overstimulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Estimulación Acústica/efectos adversos , Adenosina Trifosfato/antagonistas & inhibidores , Regulación hacia Abajo/fisiología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Ruido/efectos adversos , Ligamento Espiral de la Cóclea/metabolismo , Adenosina Trifosfato/deficiencia , Animales , Animales no Consanguíneos , Modelos Animales de Enfermedad , Pérdida Auditiva Provocada por Ruido/enzimología , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Sensorineural/enzimología , Pérdida Auditiva Sensorineural/etiología , Masculino , Ratones , Ligamento Espiral de la Cóclea/enzimología , Ligamento Espiral de la Cóclea/fisiopatología
5.
J Pharmacol Sci ; 114(1): 50-62, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20703012

RESUMEN

There is evidence that reactive oxygen species (ROS) are formed in the cochlea during acoustic injury. However, very little is known about the involvement of ROS signals in the spiral ligament (SL) during such injury. The purpose of this study was to determine the effect of the multifunctional antioxidant tempol and the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) on acoustic injury and the c-Jun N-terminal kinase (JNK) pathway in the SL. Exposure of adult mice to noise (8-kHz octave band, 110-dB SPL for 1 h) produced permanent hearing loss. Noise exposure increased not only the formation of a protein modified by 4-hydroxynonenal and formation of nitrotyrosine, but also the level of phospho-JNK in the SL. Pretreatment with tempol or L-NAME was effective in protecting the noise-exposed animals from hearing loss, as well as in abolishing the noise-induced activation of the JNK signaling pathway. Interestingly, noise exposure caused a dramatic decrease in connexin26 level in the SL. This decrease was prevented by tempol or L-NAME. Taken together, our data suggest that noise-induced hearing loss is due at least in part to ROS / nitric oxide-mediated activation of the JNK pathway and down-regulation of connexin26 in the SL of mice.


Asunto(s)
Conexinas/fisiología , Óxidos N-Cíclicos/administración & dosificación , Pérdida Auditiva Provocada por Ruido/prevención & control , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , NG-Nitroarginina Metil Éster/administración & dosificación , Ligamento Espiral de la Cóclea/metabolismo , Estimulación Acústica/efectos adversos , Animales , Conexina 26 , Conexinas/antagonistas & inhibidores , Óxidos N-Cíclicos/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , NG-Nitroarginina Metil Éster/uso terapéutico , Fármacos Neuroprotectores/administración & dosificación , Marcadores de Spin , Ligamento Espiral de la Cóclea/efectos de los fármacos , Ligamento Espiral de la Cóclea/enzimología
6.
J Pharmacol Sci ; 113(3): 267-70, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20562520

RESUMEN

We investigated the effects of treatment with trimethyltin (TMT) on the expression of glutathione-related enzymes in mouse hippocampus. TMT promoted the expression of glutathione S-transferase (GST) Ya/Yc mRNA, and GSTA2 protein, but not that of glutamate-cysteine ligase catalytic subunit mRNA, 1 day after injection. TMT produced a slight but significant elevation of GST activity during the period from day 1 to 7 post-treatment. No significant change was seen in the activity of glutathione peroxidase at anytime post-TMT treatment. Our data suggest the prolonged elevation of GST activity in the hippocampus following TMT treatment through enhanced expression of the GST Ya/Yc.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Oxidantes/toxicidad , Compuestos de Trimetilestaño/toxicidad , Animales , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/genética , Hipocampo/metabolismo , Historia del Siglo XVI , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
7.
Dev Neurobiol ; 69(14): 913-30, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19743445

RESUMEN

In the mammalian cochlea, both the sensory cells-called hair cells (HCs)-and nonsensory cells such as supporting cells (SCs) and mesenchymal cells participate in proper auditory function through the expression of various functional molecules. During development, expression of certain genes is repressed through genomic methylation, one of the major epigenetic regulatory mechanisms. We explored the genomic regions that were differentially methylated in rat auditory epithelium at postnatal day 1 (P1) and P14 using amplification of intermethylated sites (AIMS). An AIMS fragment was mapped to the 3'-flanking region of Pou3f3/Brn-1. Bisulfite-converted PCR and quantitative methylation-specific PCR showed that the methylation frequency of the AIMS region and the adjacent CpG island was increased at P14, when the expression of Pou3f3 and the noncoding RNAs nearby decreased. Expression of de novo DNA methyltransferases 3a and 3b also suggests a role of epigenetic regulation during postnatal inner ear development. Immunohistochemical analysis showed that Pou3f3 was expressed specifically in the SCs and mesenchymal cells in the cochlea and established that Pou3f3 is a new cell-type marker for studying inner ear development. Mice deficient in Pou3f3 or Pou3f2 plus Pou3f3 did not exhibit any abnormality in the embryonic cochlea. Absence of Pou3f3 affected neither the proliferation nor the differentiation activities of HC progenitor cells. Pou3f3 may, however, be important for the maintenance or functional development of the postnatal cochlea. This is the first report to study involvement of an epigenetic regulatory mechanism in the developing mammalian auditory epithelium.


Asunto(s)
Cóclea/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Factores del Dominio POU/genética , Animales , Diferenciación Celular , Metilación de ADN/genética , Epitelio/metabolismo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Factores del Dominio POU/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
J Pharmacol Sci ; 110(4): 424-36, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19602844

RESUMEN

The organotin trimethyltin (TMT) is known to cause neuronal degeneration in the murine brain. Earlier studies indicate that TMT-induced neuronal degeneration is enhanced by adrenalectomy. However, no evaluation has been attempted to determine the mechanism underlying the enhancement of TMT neurotoxicity by adrenalectomy and its implications in neuronal degeneration. To assess the implications and determine the mechanism of adrenalectomy-elicited enhancement of TMT neurotoxicity, we examined neuronal degeneration and associated signaling pathways in adrenalectomized mice. Adrenalectomy dramatically enhanced the TMT-induced neuronal damage in certain brain regions including the dentate gyrus, olfactory bulb, and anterior olfactory nucleus, in addition to exacerbating the behavioral abnormalities. TMT-induced activation of caspase-3 and calpain was also enhanced by adrenalectomy. The above events elicited by TMT were almost entirely prevented by treatment with dexamethasone. In addition to the above events, adrenalectomy clearly enhanced the activation of c-Jun-N-terminal kinases and the formation of 4-hydroxynonenal in the dentate gyrus following TMT treatment. The dentate granule cell damage induced by TMT was exacerbated by mifepristone, a glucocorticoid-receptor antagonist. Taken together, our data suggest that endogenous and exogenous glucocorticoids prevent neurodegeneration induced by TMT in the central nervous system by attenuating intensive oxidative stress and associated signaling pathways.


Asunto(s)
Glucocorticoides/farmacología , Degeneración Nerviosa/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Compuestos de Trimetilestaño/toxicidad , Adrenalectomía/efectos adversos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Calpaína/efectos de los fármacos , Calpaína/metabolismo , Caspasa 3/efectos de los fármacos , Caspasa 3/metabolismo , Dexametasona/farmacología , Glucocorticoides/metabolismo , Masculino , Ratones , Mifepristona/farmacología , Degeneración Nerviosa/prevención & control , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Conejos , Transducción de Señal/efectos de los fármacos
9.
J Pharmacol Sci ; 109(1): 60-70, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19122368

RESUMEN

The organotin trimethyltin (TMT) is known to cause neuronal degeneration in the central nervous system. A systemic injection of TMT produced neuronal damage in the cerebral frontal cortex of mice. To elucidate the mechanism(s) underlying the toxicity of TMT toward neurons, we prepared primary cultures of neurons from the cerebral cortex of mouse embryos for use in this study. Microscopic observations revealed that a continuous exposure to TMT produced neuronal damage with nuclear condensation in an incubation time-dependent manner up to 48 h. The neuronal damage induced by TMT was not blocked by N-methyl-D-aspartate receptor channel-blocker MK-801. The exposure to TMT produced an elevation of the phosphorylation level of c-Jun N-terminal kinase (JNK)(p46), but not JNK(p54), prior to neuronal death. Under the same conditions, a significant elevation was seen in the phosphorylation level of stress-activated protein kinase 1, which activates JNKs. Furthermore, TMT enhanced the expression and phosphorylation of c-Jun during a continuous exposure. The JNK inhibitor SP600125 was effective in significantly but only partially attenuating the TMT-induced nuclear condensation and accumulation of lactate dehydrogenase in the culture medium. Taken together, our data suggest that the neuronal damage induced by TMT was independent of excitotoxicity but that at least some of it was dependent on the JNK cascades in primary cultures of cortical neurons.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Degeneración Nerviosa/fisiopatología , Neuronas/efectos de los fármacos , Compuestos de Trimetilestaño/toxicidad , Animales , Antracenos/administración & dosificación , Antracenos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Maleato de Dizocilpina/administración & dosificación , Maleato de Dizocilpina/farmacología , Activación Enzimática/efectos de los fármacos , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/toxicidad , Immunoblotting , Inyecciones Intraperitoneales , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Ratones Endogámicos , N-Metilaspartato/administración & dosificación , N-Metilaspartato/farmacología , Degeneración Nerviosa/inducido químicamente , Neuronas/citología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Factores de Tiempo , Compuestos de Trimetilestaño/administración & dosificación
10.
Neuropharmacology ; 55(5): 693-703, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18601936

RESUMEN

The heat shock protein (Hsp) 110 family is composed of HSP105, APG-1, and APG-2. As the response of these proteins to neuronal damage is not yet fully understood, in the present study, we assessed their expression in mouse hippocampal neurons following trimethyltin chloride (TMT) treatment in vivo and in vitro. Although each of these three Hsps had a distinct regional distribution within the hippocampus, a low level of all of them was observed in the granule cell layer of the dentate gyrus in naïve animals. TMT was effective in markedly increasing the level of these Hsps in the granule cell layer, at least 16h to 4days after the treatment. In the dentate granule cell layer on day 2 after TMT treatment, HSP105 was expressed mainly in the perikarya of NeuN-positive cells (intact neurons); whereas APG-1 and APG-2 were predominantly found in NeuN-negative cells (damaged neurons as evidenced by signs of cell shrinkage and condensation of chromatin). Assessments using primary cultures of mouse hippocampal neurons exposed to TMT revealed that whereas HSP105 was observed in intact neurons rather than in damaged neurons, APG-1 and APG-2 were detected in both damaged neurons and intact neurons. Taken together, our data suggest that APG-1 and APG-2 may play different roles from HSP105 in neurons damaged by TMT.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Proteínas del Choque Térmico HSP110/metabolismo , Hipocampo/citología , Neuronas/efectos de la radiación , Compuestos de Trimetilestaño/farmacología , Animales , Células Cultivadas , Corteza Cerebral/citología , Fragmentación del ADN , Embrión de Mamíferos , Proteínas del Choque Térmico HSP110/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Técnicas In Vitro , Lectinas/metabolismo , Proteínas de la Membrana , Ratones , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
11.
Neurochem Int ; 53(3-4): 71-8, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18585418

RESUMEN

Recently we showed that the level of mitochondrial mRNA was decreased prior to neuronal death induced by glutamate. As the level of mRNA is regulated by ribonuclease (RNase), we examined RNase activity and its expression in the primary cultures of cortical neurons after glutamate treatment in order to evaluate the involvement of RNase in glutamate-induced neuronal death. A 15-min exposure of the cultures to glutamate at the concentration of 100 microM produced marked neuronal damage (more than 70% of total cells) at 24-h post-exposure. Under the experimental conditions used, RNA degradation was definitely observed at a period of 4-12-h post-exposure, a time when no damage was seen in the neurons. Glutamate-induced RNA degradation was completely prevented by the N-methyl-d-aspartic acid (NMDA) receptor channel blocker MK-801 or the NR2B-containing NMDA receptor antagonist ifenprodil. Glutamate exposure produced enhanced expression of RNase L at least 2-12h later, which was absolutely abolished by MK-801. However, no significant change was seen in the level of RNase H1 mRNA at any time point post-glutamate treatment. Immunocytochemical studies revealed that RNase L expressed in response to glutamate was localized within the nucleus, mitochondria, and cytoplasm in the neurons. Taken together, our data suggest that expression of RNase L is a signal generated by NMDA receptor in cortical neurons. RNase L expression and RNA degradation may be events that cause neuronal damage induced by NMDA receptor activation.


Asunto(s)
Corteza Cerebral/enzimología , Endorribonucleasas/metabolismo , Neuronas/enzimología , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Animales , Compartimento Celular/efectos de los fármacos , Compartimento Celular/fisiología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Ratones , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/enzimología , Neuronas/citología , Neuronas/efectos de los fármacos , Neurotoxinas/metabolismo , Neurotoxinas/farmacología , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/fisiología , ARN Mensajero/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Factores de Tiempo
12.
Neurosci Lett ; 440(3): 232-6, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18572315

RESUMEN

Trimethyltin chloride (TMT) is known to produce neuronal damage in the dentate gyrus at least in part via oxidative stress. DJ-1, an oncogene product, is known to act as an anti-oxidant to prevent neuronal damage in dopaminergic neurons. The aim of this study was to determine the alterations in DJ-1 expression in the hippocampal cells of mice after in vivo and in vitro treatment with TMT. In naïve animals, DJ-1 was ubiquitously expressed in the hippocampus, in which the CA1 pyramidal cell layer and dentate granule cell layer had lower and higher levels of it, respectively. An intraperitoneal injection of TMT at the dose of 2.8 mg/kg produced DJ-1 up-regulation in the CA1 pyramidal cell layer, CA3 stratum lucidum, dentate molecular layer, and dentate hilus, but not in the dentate granule cell layer, on day 3-5 post-treatment. Temporary depletion of endogenous glutathione by the prior subcutaneous injection of 2-cyclohexen-1-one was effective in facilitating neuronal damage and DJ-1 up-regulation in the dentate gyrus induced by an intraperitoneal injection of TMT at the dose of 2.0 mg/kg. In primary cultures of mouse hippocampal cells, DJ-1 was present in neurons, but not in astrocytes. TMT treatment produced a dramatic expression of DJ-1 in the astrocytes in the cultures. Taken together, our data suggest that the DJ-1 protein is positively regulated in response to oxidative stress induced by TMT.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Neuronas/efectos de los fármacos , Proteínas Oncogénicas/metabolismo , Compuestos de Trimetilestaño/toxicidad , Análisis de Varianza , Animales , Células Cultivadas , Ciclohexanonas/farmacología , Interacciones Farmacológicas , Embrión de Mamíferos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/lesiones , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Oncogénicas/genética , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Factores de Tiempo
13.
J Neurosci Res ; 86(7): 1635-46, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18183623

RESUMEN

Our earlier study demonstrated that in vivo acute treatment with trimethyltin chloride (TMT) produces severe neuronal damage in the dentate gyrus and cognition impairment in mice. In the present study, we assessed whether TMT was capable of causing neuronal degeneration in the olfactory bulb (OB) and anterior olfactory nucleus (AON) of the mouse brain. An intraperitoneal injection of TMT at the dose of 2.8 mg/kg led to a dramatic increase in the number of degenerating cells, which were reactive with antibody against single-stranded DNA, in the granule cell layer (GCL) of the OB and AON 1 day and 2 days later, respectively. TMT treatment produced a marked translocation of phospho-c-Jun-N-terminal kinase from the cytoplasm to the nucleus in the AON. Expectedly, a marked increase in phospho-c-Jun-positive cells was seen in the AON after the treatment. In addition to the AON, the mitral cell layer of the olfactory bulb showed the presence of phospho-c-Jun-positive cells after the treatment. However, the GCL had no cells positive for either phospho-c-Jun-N-terminal kinase or phospho-c-Jun at any time after the treatment with TMT. Similarly, TMT-induced nuclear translocation of the lysosomal enzyme deoxyribonuclease II was seen in the AON, but not in the GCL. On the other hand, TMT elicited the expression of activated caspase 3 in the GCL but not in the AON. Taken together, our results suggest that TMT is capable of causing neuronal degeneration in the murine OB and AON through different cascades in the two structures.


Asunto(s)
Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Bulbo Olfatorio/patología , Vías Olfatorias/patología , Compuestos de Trimetilestaño/farmacología , Animales , Conducta Animal/efectos de los fármacos , Caspasa 3/metabolismo , Trastornos del Conocimiento/inducido químicamente , Endodesoxirribonucleasas/metabolismo , Conducta Exploratoria/efectos de los fármacos , Técnicas In Vitro , MAP Quinasa Quinasa 4/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-jun/metabolismo
14.
Neurochem Int ; 52(4-5): 761-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17949856

RESUMEN

Acute treatment with trimethyltin chloride (TMT) produces neuronal damage in the hippocampal dentate gyrus of mice. We investigated the in vivo role of glutathione in mechanisms associated with TMT-induced neural cell damage in the hippocampus by examining mice depleted of endogenous glutathione by prior treatment with 2-cyclohexen-1-one (CHO). In the hippocampus of animals treated with CHO 1h beforehand, a significant increase was seen in the number of single-stranded DNA-positive cells in the dentate gyrus when determined on day 2 after the injection of TMT at a dose of 2.0 mg/kg. Immunoblot analysis revealed that CHO treatment induced a significant increase in the phosphorylation of c-Jun N-terminal kinase in the cytosolic and nuclear fractions obtained from the dentate gyrus at 16 h after the TMT injection. There was also a concomitant increase in the level of phospho-c-Jun in the cytosol at 16 h after the injection. Expectedly, lipid peroxidation was increased by TMT in the hippocampus, and was enhanced by the CHO treatment. Moreover, CHO treatment facilitated behavioral changes induced by TMT. Taken together, our data indicate that TMT-induced neuronal damage is caused by activation of cell death signals induced at least in part by oxidative stress. We conclude that endogenous glutathione protectively regulates neuronal damage induced by TMT by attenuating oxidative stress.


Asunto(s)
Giro Dentado/patología , Glutatión/fisiología , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Estrés Oxidativo/efectos de los fármacos , Compuestos de Trimetilestaño/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Ciclohexanonas/toxicidad , Citosol/efectos de los fármacos , Citosol/metabolismo , Giro Dentado/metabolismo , Glutatión/metabolismo , Immunoblotting , Inmunohistoquímica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/psicología , Transducción de Señal/fisiología
15.
Neurochem Int ; 51(2-4): 209-15, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17559975

RESUMEN

Glutamate-cysteine ligase (GCL), previously known as gamma-glutamylcysteine synthetase, is the rate-limiting enzyme for GSH synthesis. The expression of GCL is mediated by activator protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB), which are known to participate in stress-induced apoptotic pathways in neuronal cells. In this study, we investigated the changes in the level of these transcription factors as well as of GCL catalytic subunit in the cochlea in response to acoustic overstimulation. Nuclear extracts were prepared from the cochlear at various time points after intense noise exposure (4kHz octave band, 125dB sound pressure level, 5h), and then determined DNA binding activity of the transcription factors. AP-1 DNA binding was markedly increased 2-12h after the noise exposure, with a peak at 2h after the exposure. NF-kappaB DNA binding was also increased immediately after the exposure. Semi-quantitative RT-PCR revealed that the catalytic subunit of GCL mRNA was elevated in the cochlea 2-24h post the exposure. Further immunohistochemical study revealed that increased level of GCL catalytic subunit observed at least in the spiral ganglion cells after the exposure. These results suggest that intense noise exposure facilitates the expression of GCL catalytic subunit in the cochlea possibly through the activation of transcription factors including AP-1 and NF-kappaB.


Asunto(s)
Cóclea/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Estimulación Acústica/efectos adversos , Animales , Dominio Catalítico/genética , Muerte Celular/genética , Cóclea/fisiopatología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Glutamato-Cisteína Ligasa/genética , Glutatión/biosíntesis , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiopatología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Masculino , Ratones , FN-kappa B/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Ruido/efectos adversos , Estrés Oxidativo/fisiología , ARN Mensajero/metabolismo , Factor de Transcripción AP-1/genética , Regulación hacia Arriba/fisiología
16.
Brain Res ; 1117(1): 101-8, 2006 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-16949561

RESUMEN

Glucocorticoids have been widely used as a therapeutic drug for sudden sensorineural hearing loss. However, very little is known about the mechanism(s) underlying the protective effect of glucocorticoids against hearing loss. As an approach toward elucidating the mechanism(s), we evaluated the effects of dexamethasone (DEX) treatment on the biosynthesis of GSH in the mouse cochlea in vivo. The systemic administration of DEX led to a significant increase in the total GSH level in the cochlea 2 to 24 h later. This DEX-induced increase in GSH occurred selectively in the spiral ganglion, but not significantly in the lateral wall tissues or in the organ of Corti. Furthermore, RT-PCR analysis revealed that DEX treatment resulted in enhanced expression of gamma-glutamylcysteine synthetase (gamma-GCS), which is the rate-limiting enzyme for de novo GSH synthesis, 1 to 24 h after the treatment. In addition to enhancing GSH biosynthesis, DEX treatment was effective in reducing lipid peroxidation in the cochlea. Taken together, DEX has the ability to facilitate GSH biosynthesis through enhanced expression of gamma-GCS in the cochlear spiral ganglion.


Asunto(s)
Dexametasona/farmacología , Glutatión/biosíntesis , Glutatión/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/metabolismo , Animales , Modelos Animales de Enfermedad , Glucocorticoides/farmacología , Glutamato-Cisteína Ligasa/efectos de los fármacos , Glutamato-Cisteína Ligasa/metabolismo , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/fisiopatología , Pérdida Auditiva Sensorineural/prevención & control , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Ratones , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Especies de Nitrógeno Reactivo/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
17.
Brain Res ; 1068(1): 237-47, 2006 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-16376312

RESUMEN

There is increasing evidence to suggest that the expression of many molecules in the lateral wall of the cochlea plays an important role in noise-induced stress responses. In this study, activation of the nuclear transcription factor nuclear factor-kappa B (NF-kappaB) was investigated in the cochlea of mice treated with intense noise exposure (4 kHz, octave band, 124 dB, for 2 h). The present noise exposure led to remarkable auditory brainstem response threshold shifts and cochlear damage on surface preparations. To assess the effects of noise exposure on NF-kappaB/DNA binding activity in the cochlea, we prepared nuclear extracts from the cochlea at different time points after noise exposure and carried out an electrophoretic mobility shift assay using a probe specific to NF-kappaB. NF-kappaB/DNA binding was significantly enhanced in the cochlea 2-6 h after noise exposure and returned to basal levels after 12 h. Supershift analysis using antibodies against p65 and p50 proteins, which are components of NF-kappaB, demonstrated that enhancement of NF-kappaB/DNA binding was at least in part due to nuclear translocation of p65. An immunohistochemical study also showed that nuclear translocation of both p65 and p50 was observed in the lateral wall after noise exposure and that there may be a possible close association between p65 and enhanced inducible nitric oxide synthase expression. These results suggest that NF-kappaB may have a detrimental role in the response to acoustic overstimulation in the cochlea of mice.


Asunto(s)
Estimulación Acústica , Núcleo Celular/metabolismo , Cóclea/metabolismo , Cóclea/fisiología , FN-kappa B/metabolismo , Animales , ADN/metabolismo , Interpretación Estadística de Datos , Ensayo de Cambio de Movilidad Electroforética , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Subunidad p50 de NF-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Ruido/efectos adversos , Transporte de Proteínas , Factor de Transcripción ReIA/metabolismo
18.
J Pharmacol Sci ; 99(4): 301-6, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16327216

RESUMEN

Differential regulation of gene expression by transcription factors is widely viewed as one of the principal mechanisms guiding development. Although numerous DNA binding proteins have been identified in various tissues, the role of individual transcription factors in the differentiation of specific cell groups, such as those populating the inner ear, is just beginning to be elucidated. It is known that transcription factors are induced in response to many signals that lead to cell growth, differentiation, inflammatory responses, the regulation of apoptosis, and neoplastic transformation. There are various transcription factors in the cochlea of the inner ear. These include activator protein-1 and nuclear factor-kappa B, glucocorticoid receptor, and so on. Based on recent reports and our investigation, in this article we review possible functions and expression of these transcription factors.


Asunto(s)
Cóclea/metabolismo , Oído Interno/metabolismo , Factores de Transcripción/fisiología , Animales , Humanos , FN-kappa B/genética , Receptores de Glucocorticoides/genética , Factor de Transcripción AP-1/genética , Factores de Transcripción/genética
19.
Neuropharmacology ; 48(6): 810-21, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15829253

RESUMEN

Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured neurons in vitro. To elucidate in vivo neuroprotective role of NMDA receptors, we investigated the effects of activation of NMDA receptors by endogenous glutamate on kainate-induced neuronal damage to the mouse hippocampus in vivo. The systemic administration of the K+ channel blocker 4-aminopyridine (4-AP, 5 mg/kg, i.p.) induced expression of c-Fos in the hippocampal neuronal cell layer, which expression was completely abolished by the noncompetitive NMDA receptor antagonist MK-801, thus indicating that the administration of 4-AP would activate NMDA receptors in the hippocampal neurons. The prior administration of 4-AP at 1 h to 1 day before significantly prevented kainate-induced pyramidal cell death in the hippocampus and expression of pyramidal cells immunoreactive with an antibody against single-stranded DNA. Further immunohistochemical study on deoxyribonuclease II revealed that the pretreatment with 4-AP led to complete abolition of deoxyribonuclease II expression induced by kainate in the CA1 and CA3 pyramidal cells. The neuroprotection mediated by 4-AP was blocked by MK-801 and by the adenosine A1 antagonist 8-cyclopenthyltheophylline. Taken together, in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation induced by deoxyribonuclease II in the murine hippocampus.


Asunto(s)
4-Aminopiridina/farmacología , Hipocampo/citología , Neuronas/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Receptores de N-Metil-D-Aspartato/fisiología , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Western Blotting/métodos , Recuento de Células/métodos , Muerte Celular/efectos de los fármacos , ADN de Cadena Simple/metabolismo , Maleato de Dizocilpina/farmacología , Interacciones Farmacológicas , Endodesoxirribonucleasas/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/patología , Técnicas In Vitro , Ácido Kaínico/farmacología , Ratones , N-Metilaspartato/farmacología , Neuronas/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Coloración y Etiquetado/métodos , Factores de Tiempo
20.
Neuropharmacology ; 46(4): 580-9, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14975682

RESUMEN

To evaluate whether in vivo glutamate signals modulate signaling processes mediated by antioxidant-response element (ARE), we examined ARE binding in nuclear extracts from the hippocampus after in vivo treatment of mice with kainate. Enhancement of ARE binding was found at 2 h to 3 days after kainate treatment. Supershift analysis indicated possible involvement of Nrf2, Fos-B, and c-Fos in ARE binding in hippocampal nuclear extracts obtained from kainate-treated animals. On super-supershift analysis by combination of these antibodies, ARE probe/protein complex was shifted by the anti-Fos-B antibody alone, but not by the anti-c-Fos antibody alone, and further addition of the anti-Nrf2 antibody dramatically eliminated binding of the complex shifted by the anti-Fos-B antibody in hippocampal nuclear extracts from kainate-treated animals. Kainate treatment induced a profound increase in levels of c-Fos and Fos-B, without markedly affecting that of Nrf2 in nuclear extracts from the hippocampus. Co-localization of Nrf2 with both Fos-B and c-Fos was found in neuronal cell layers of the hippocampus in kainate-treated animals. RT-PCR analysis revealed that kainate treatment increases glutathione-S-transferase mRNA level in the hippocampus. Taken together, kainate signals may enhance nuclear ARE binding through an interaction between constitutive Nrf2 with inducible Fos-B expressed in murine hippocampus.


Asunto(s)
Antioxidantes/metabolismo , Núcleo Celular/metabolismo , Hipocampo/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Elementos de Respuesta/fisiología , Animales , Secuencia de Bases/fisiología , Núcleo Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Ácido Kaínico/farmacología , Masculino , Ratones , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Elementos de Respuesta/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...