Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 615(7952): 499-506, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890229

RESUMEN

Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.


Asunto(s)
ADN Mitocondrial , Fumaratos , Inmunidad Innata , Mitocondrias , Animales , Ratones , ADN Mitocondrial/metabolismo , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Riñón/enzimología , Riñón/metabolismo , Riñón/patología , Citosol/metabolismo
2.
J Biochem ; 173(1): 1-11, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36346121

RESUMEN

Mitochondria are involved in various cellular processes, such as energy production, inflammatory responses and cell death. Mitochondrial dysfunction is associated with many age-related diseases, including neurological disorders and heart failure. Mitochondrial quality is strictly maintained by mitochondrial dynamics linked to an adequate supply of phospholipids and other substances from the endoplasmic reticulum (ER). The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 is responsible for mitochondrial quality control through the regulation of mitochondrial dynamics, formation of mitochondria-ER contacts and mitophagy. MITOL deficiency has been shown to impair mitochondrial function, cause an excessive inflammatory response and increase vulnerability to stress, resulting in the exacerbation of the disease. In this study, we overview the ubiquitin-mediated regulation of mitochondrial function by MITOL and the relationship between MITOL and diseases.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Muerte Celular , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
3.
iScience ; 25(7): 104582, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35789860

RESUMEN

Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI.

4.
J Biochem ; 171(5): 529-541, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34964862

RESUMEN

The transfer of phospholipids from the endoplasmic reticulum (ER) to mitochondria via the mitochondria-ER contact site (MERCS) is essential for maintaining mitochondrial function and integrity. Here, we identified RMDN3/PTPIP51, possessing phosphatidic acid (PA)-transfer activity, as a neighbouring protein of the mitochondrial E3 ubiquitin ligase MITOL/MARCH5 by proximity-dependent biotin labelling using APEX2. We found that MITOL interacts with and ubiquitinates RMDN3. Mutational analysis identified lysine residue 89 in RMDN3 as a site of ubiquitination by MITOL. Loss of MITOL or the substitution of lysine 89 to arginine in RMDN3 significantly reduced the PA-binding activity of RMDN3, suggesting that MITOL regulates the transport of PA to mitochondria by activating RMDN3. Our findings imply that ubiquitin signalling regulates phospholipid transport at the MERCS.


Asunto(s)
Lisina , Proteínas Mitocondriales , Retículo Endoplásmico/metabolismo , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Ácidos Fosfatidicos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
J Biol Chem ; 297(2): 100986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298015

RESUMEN

Radial migration during cortical development is required for formation of the six-layered structure of the mammalian cortex. Defective migration of neurons is linked to several developmental disorders such as autism and schizophrenia. A unique swollen structure called the dilation is formed in migrating neurons and is required for movement of the centrosome and nucleus. However, the detailed molecular mechanism by which this dilation forms is unclear. We report that CAMDI, a gene whose deletion is associated with psychiatric behavior, is degraded by cell division cycle protein 20 (Cdc20)-anaphase-promoting complex/cyclosome (APC/C) cell-cycle machinery after centrosome migration into the dilation in mouse brain development. We also show that CAMDI is restabilized in the dilation until the centrosome enters the dilation, at which point it is once again immediately destabilized. CAMDI degradation is carried out by binding to Cdc20-APC/C via the destruction box degron of CAMDI. CAMDI destruction box mutant overexpression inhibits dilation formation and neuronal cell migration via maintaining the stabilized state of CAMDI. These results indicate that CAMDI is a substrate of the Cdc20-APC/C system and that the oscillatory regulation of CAMDI protein correlates with dilation formation for proper cortical migration.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Encéfalo/crecimiento & desarrollo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Trastornos Mentales/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Centrosoma/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Femenino , Técnicas de Silenciamiento del Gen/métodos , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones , Modelos Animales , Neuronas/metabolismo
6.
J Biol Chem ; 296: 100620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33811862

RESUMEN

Mouse models of various neuropsychiatric disorders, such as schizophrenia, often display an immature dentate gyrus, characterized by increased numbers of immature neurons and neuronal progenitors and a dearth of mature neurons. We previously demonstrated that the CRMP5-associated GTPase (CRAG), a short splice variant of Centaurin-γ3/AGAP3, is highly expressed in the dentate gyrus. CRAG promotes cell survival and antioxidant defense by inducing the activation of serum response factors at promyelocytic leukemia protein bodies, which are nuclear stress-responsive domains, during neuronal development. However, the physiological role of CRAG in neuronal development remains unknown. Here, we analyzed the role of CRAG using dorsal forebrain-specific CRAG/Centaurin-γ3 knockout mice. The mice revealed maturational abnormality of the hippocampal granule cells, including increased doublecortin-positive immature neurons and decreased calbindin-positive mature neurons, a typical phenotype of immature dentate gyri. Furthermore, the mice displayed hyperactivity in the open-field test, a common measure of exploratory behavior, suggesting that these mice may serve as a novel model for neuropsychiatric disorder associated with hyperactivity. Thus, we conclude that CRAG is required for the maturation of neurons in the dentate gyrus, raising the possibility that its deficiency might promote the development of psychiatric disorders in humans.


Asunto(s)
Giro Dentado/patología , GTP Fosfohidrolasas/fisiología , Células-Madre Neurales/patología , Neurogénesis , Neuronas/patología , Prosencéfalo/patología , Agitación Psicomotora/patología , Animales , Giro Dentado/metabolismo , Conducta Exploratoria , Femenino , Masculino , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Agitación Psicomotora/etiología , Agitación Psicomotora/metabolismo
7.
Biochem Biophys Res Commun ; 549: 67-74, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33667711

RESUMEN

Amyloid-ß (Aß) plaques are strongly associated with the development of Alzheimer's disease (AD). However, it remains unclear how morphological differences in Aß plaques determine the pathogenesis of Aß. Here, we categorized Aß plaques into four types based on the macroscopic features of the dense core, and found that the Aß-plaque subtype containing a larger dense core showed the strongest association with neuritic dystrophy. Astrocytes dominantly accumulated toward these expanded/dense-core-containing Aß plaques. Previously, we indicated that deletion of the mitochondrial ubiquitin ligase MITOL/MARCH5 triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aß pathology. In this study, MITOL deficiency accelerated the formation of expanded/dense-core-containing Aß plaques, which showed reduced contacts with astrocytes, but not microglia. Our findings suggest that expanded/dense-core-containing Aß-plaque formation enhanced by the alteration of mitochondrial function robustly contributes to the exacerbation of Aß neuropathology, at least in part, through the reduced contacts between Aß plaques and astrocytes.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Astrocitos/patología , Neurotoxinas/toxicidad , Placa Amiloide/patología , Animales , Astrocitos/efectos de los fármacos , Eliminación de Gen , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuritas/patología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
8.
EMBO Rep ; 22(3): e49097, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33565245

RESUMEN

Parkin promotes cell survival by removing damaged mitochondria via mitophagy. However, although some studies have suggested that Parkin induces cell death, the regulatory mechanism underlying the dual role of Parkin remains unknown. Herein, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) regulates Parkin-mediated cell death through the FKBP38-dependent dynamic translocation from the mitochondria to the ER during mitophagy. Mechanistically, MITOL mediates ubiquitination of Parkin at lysine 220 residue, which promotes its proteasomal degradation, and thereby fine-tunes mitophagy by controlling the quantity of Parkin. Deletion of MITOL leads to accumulation of the phosphorylated active form of Parkin in the ER, resulting in FKBP38 degradation and enhanced cell death. Thus, we have shown that MITOL blocks Parkin-induced cell death, at least partially, by protecting FKBP38 from Parkin. Our findings unveil the regulation of the dual function of Parkin and provide a novel perspective on the pathogenesis of PD.


Asunto(s)
Mitofagia , Ubiquitina-Proteína Ligasas , Supervivencia Celular , Células HeLa , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Commun Biol ; 4(1): 192, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580194

RESUMEN

Mitochondrial pathophysiology is implicated in the development of Alzheimer's disease (AD). An integrative database of gene dysregulation suggests that the mitochondrial ubiquitin ligase MITOL/MARCH5, a fine-tuner of mitochondrial dynamics and functions, is downregulated in patients with AD. Here, we report that the perturbation of mitochondrial dynamics by MITOL deletion triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aß pathology. Notably, MITOL deletion in the brain enhanced the seeding effect of Aß fibrils, but not the spontaneous formation of Aß fibrils and plaques, leading to excessive secondary generation of toxic and dispersible Aß oligomers. Consistent with this, MITOL-deficient mice with Aß etiology exhibited worsening cognitive decline depending on Aß oligomers rather than Aß plaques themselves. Our findings suggest that alteration in mitochondrial morphology might be a key factor in AD due to directing the production of Aß form, oligomers or plaques, responsible for disease development.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Péptidos beta-Amiloides/metabolismo , Encéfalo/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Animales , Conducta Animal , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Cognición , Modelos Animales de Enfermedad , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Placa Amiloide , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Ubiquitina-Proteína Ligasas/genética
10.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471110

RESUMEN

The molecular pathology of diseases seen from the mitochondrial axis has become more complex with the progression of research. A variety of factors, including the failure of mitochondrial dynamics and quality control, have made it extremely difficult to narrow down drug discovery targets. We have identified MITOL (mitochondrial ubiquitin ligase: also known as MARCH5) localized on the mitochondrial outer membrane and previously reported that it is an important regulator of mitochondrial dynamics and mitochondrial quality control. In this review, we describe the pathological aspects of MITOL revealed through functional analysis and its potential as a drug discovery target.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Dinámicas Mitocondriales
11.
J Biochem ; 168(3): 305-312, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302394

RESUMEN

In mitochondrial disorders, short stature and growth failure are common symptoms, but their underlying mechanism remains unknown. In this study, we examined the cause of growth failure of mice induced by nestin promoter-driven knockout of the mitochondrial ubiquitin ligase MITOL (MARCH5), a key regulator of mitochondrial function. MITOL-knockout mice have congenital hypoplasia of the anterior pituitary caused by decreased expression of pituitary transcript factor 1 (Pit1). Consistently, both mRNA levels of growth hormone (GH) and prolactin levels were markedly decreased in the anterior pituitary of mutant mice. Growth failure of mutant mice was partly rescued by hypodermic injection of recombinant GH. To clarify whether this abnormality was induced by the primary effect of MITOL knockdown in the anterior pituitary or a secondary effect of other lesions, we performed lentiviral-mediated knockdown of MITOL on cultured rat pituitary GH3 cells, which secrete GH. GH production was severely compromised in MITOL-knockdown GH3 cells. In conclusion, MITOL plays a critical role in the development of the anterior pituitary; therefore, mice with MITOL dysfunction exhibited pituitary dwarfism caused by anterior pituitary hypoplasia. Our findings suggest that mitochondrial dysfunction is commonly involved in the unknown pathogenesis of pituitary dwarfism.


Asunto(s)
Enanismo/genética , Enanismo/metabolismo , Proteínas Mitocondriales/genética , Adenohipófisis/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular Tumoral , Enanismo/tratamiento farmacológico , Técnicas de Silenciamiento del Gen , Hormona del Crecimiento/administración & dosificación , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Prolactina/genética , Prolactina/metabolismo , ARN Mensajero/genética , Ratas , Transducción de Señal/genética , Transfección
12.
Science ; 367(6484): 1366-1371, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32193326

RESUMEN

Mitochondrial plasticity is a key regulator of cell fate decisions. Mitochondrial division involves Dynamin-related protein-1 (Drp1) oligomerization, which constricts membranes at endoplasmic reticulum (ER) contact sites. The mechanisms driving the final steps of mitochondrial division are still unclear. Here, we found that microdomains of phosphatidylinositol 4-phosphate [PI(4)P] on trans-Golgi network (TGN) vesicles were recruited to mitochondria-ER contact sites and could drive mitochondrial division downstream of Drp1. The loss of the small guanosine triphosphatase ADP-ribosylation factor 1 (Arf1) or its effector, phosphatidylinositol 4-kinase IIIß [PI(4)KIIIß], in different mammalian cell lines prevented PI(4)P generation and led to a hyperfused and branched mitochondrial network marked with extended mitochondrial constriction sites. Thus, recruitment of TGN-PI(4)P-containing vesicles at mitochondria-ER contact sites may trigger final events leading to mitochondrial scission.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales , Fosfatos de Fosfatidilinositol/metabolismo , Red trans-Golgi/metabolismo , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Dinaminas/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Células HeLa , Humanos , Microdominios de Membrana , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Interferencia de ARN
13.
Sci Rep ; 9(1): 20107, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882856

RESUMEN

CRMP-5-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, is predominantly expressed in the developing brain. We previously demonstrated that CRAG, but not centaurin-γ3, translocates to the nucleus and activates the serum response factor (SRF)-c-Fos pathway in cultured neuronal cells. However, the physiological relevance of CRAG in vivo is unknown. Here, we found that CRAG/centaurin-γ3-knockout mice showed intensively suppressed kainic acid-induced c-fos expression in the hippocampus. Analyses of molecular mechanisms underlying CRAG-mediated SRF activation revealed that CRAG has an essential role in GTPase activity, interacts with ELK1 (a co-activator of SRF), and activates SRF in an ELK1-dependent manner. Furthermore, CRAG and ELK1 interact with promyelocytic leukaemia bodies through SUMO-interacting motifs, which is required for SRF activation. These results suggest that CRAG plays a critical role in ELK1-dependent SRF-c-fos activation at promyelocytic leukaemia bodies in the developing brain.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al GTP/genética , Proteínas Activadoras de GTPasa/genética , Factor de Respuesta Sérica/metabolismo , Proteína Elk-1 con Dominio ets/genética , Animales , Hipocampo/metabolismo , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sumoilación
14.
PLoS One ; 14(11): e0224967, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31730661

RESUMEN

Little is known about the molecular mechanisms of cognitive deficits in psychiatric disorders. CAMDI is a psychiatric disorder-related factor, the deficiency of which in mice results in delayed neuronal migration and psychiatrically abnormal behaviors. Here, we found that CAMDI-deficient mice exhibited impaired recognition memory and spatial reference memory. Knockdown of CAMDI in hippocampal neurons increased the amount of internalized alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) and attenuated the chemical long-term potentiation (LTP)-dependent cell surface expression of AMPAR. KIBRA was identified as a novel CAMDI-binding protein that retains AMPAR in the cytosol after internalization. KIBRA inhibited CAMDI-dependent Rab11 activation, thereby attenuating AMPAR cell surface expression. These results suggest that CAMDI regulates AMPAR cell surface expression during LTP. CAMDI dysfunction may partly explain the mechanism underlying cognitive deficits in psychiatric diseases.


Asunto(s)
Membrana Celular/metabolismo , Cognición , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Memoria , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Receptores AMPA/metabolismo , Animales , Línea Celular Tumoral , Endocitosis , Humanos , Potenciación a Largo Plazo , Ratones Noqueados , Unión Proteica , Memoria Espacial , Proteínas de Unión al GTP rab/metabolismo
15.
EMBO J ; 38(15): e100999, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368599

RESUMEN

Unresolved endoplasmic reticulum (ER) stress shifts the unfolded protein response signaling from cell survival to cell death, although the switching mechanism remains unclear. Here, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) inhibits ER stress-induced apoptosis through ubiquitylation of IRE1α at the mitochondria-associated ER membrane (MAM). MITOL promotes K63-linked chain ubiquitination of IRE1α at lysine 481 (K481), thereby preventing hyper-oligomerization of IRE1α and regulated IRE1α-dependent decay (RIDD). Therefore, under ER stress, MITOL depletion or the IRE1α mutant (K481R) allows for IRE1α hyper-oligomerization and enhances RIDD activity, resulting in apoptosis. Similarly, in the spinal cord of MITOL-deficient mice, ER stress enhances RIDD activity and subsequent apoptosis. Notably, unresolved ER stress attenuates IRE1α ubiquitylation, suggesting that this directs the apoptotic switch of IRE1α signaling. Our findings suggest that mitochondria regulate cell fate under ER stress through IRE1α ubiquitylation by MITOL at the MAM.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Células COS , Línea Celular , Chlorocebus aethiops , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
16.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31416892

RESUMEN

Mitochondrial abnormalities are associated with developmental disorders, although a causal relationship remains largely unknown. Here, we report that increased oxidative stress in neurons by deletion of mitochondrial ubiquitin ligase MITOL causes a potential neuroinflammation including aberrant astrogliosis and microglial activation, indicating that mitochondrial abnormalities might confer a risk for inflammatory diseases in brain such as psychiatric disorders. A role of MITOL in both mitochondrial dynamics and ER-mitochondria tethering prompted us to characterize three-dimensional structures of mitochondria in vivo. In MITOL-deficient neurons, we observed a significant reduction in the ER-mitochondria contact sites, which might lead to perturbation of phospholipids transfer, consequently reduce cardiolipin biogenesis. We also found that branched large mitochondria disappeared by deletion of MITOL. These morphological abnormalities of mitochondria resulted in enhanced oxidative stress in brain, which led to astrogliosis and microglial activation partly causing abnormal behavior. In conclusion, the reduced ER-mitochondria tethering and excessive mitochondrial fission may trigger neuroinflammation through oxidative stress.


Asunto(s)
Retículo Endoplásmico/metabolismo , Gliosis/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Cardiolipinas/metabolismo , Técnicas de Inactivación de Genes , Gliosis/metabolismo , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Estrés Oxidativo , Fosfolípidos/metabolismo
17.
Essays Biochem ; 62(3): 341-360, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030364

RESUMEN

Mitochondria are highly dynamic organelles undergoing coordinated cycles of fission and fusion, referred as 'mitochondrial dynamics', in order to maintain their shape, distribution and size. Their transient and rapid morphological adaptations are crucial for many cellular processes such as cell cycle, immunity, apoptosis and mitochondrial quality control. Mutations in the core machinery components and defects in mitochondrial dynamics have been associated with numerous human diseases. These dynamic transitions are mainly ensured by large GTPases belonging to the Dynamin family. Mitochondrial fission is a multi-step process allowing the division of one mitochondrion in two daughter mitochondria. It is regulated by the recruitment of the GTPase Dynamin-related protein 1 (Drp1) by adaptors at actin- and endoplasmic reticulum-mediated mitochondrial constriction sites. Drp1 oligomerization followed by mitochondrial constriction leads to the recruitment of Dynamin 2 to terminate membrane scission. Inner mitochondrial membrane constriction has been proposed to be an independent process regulated by calcium influx. Mitochondrial fusion is driven by a two-step process with the outer mitochondrial membrane fusion mediated by mitofusins 1 and 2 followed by inner membrane fusion, mediated by optic atrophy 1. In addition to the role of membrane lipid composition, several members of the machinery can undergo post-translational modifications modulating these processes. Understanding the molecular mechanisms controlling mitochondrial dynamics is crucial to decipher how mitochondrial shape meets the function and to increase the knowledge on the molecular basis of diseases associated with morphology defects. This article will describe an overview of the molecular mechanisms that govern mitochondrial fission and fusion in mammals.


Asunto(s)
Mitocondrias/fisiología , Dinámicas Mitocondriales , Animales , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional
19.
EMBO Rep ; 17(12): 1785-1798, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27737934

RESUMEN

The DISC1-interacting protein CAMDI has been suggested to promote radial migration through centrosome regulation. However, its physiological relevance is unclear. Here, we report the generation and characterization of CAMDI-deficient mice. CAMDI-deficient mice exhibit delayed radial migration with aberrant neural circuit formation and psychiatric behaviors including hyperactivity, repetitive behavior, and social abnormality typically observed in autism spectrum disorder patients. Analyses of direct targets of CAMDI identify HDAC6 whose α-tubulin deacetylase activity is inhibited by CAMDI at the centrosome. CAMDI deficiency increases HDAC6 activity, leading to unstable centrosomes with reduced γ-tubulin and acetylated α-tubulin levels. Most importantly, psychiatric behaviors as well as delayed migration are significantly rescued by treatment with Tubastatin A, a specific inhibitor of HDAC6. Our findings indicate that HDAC6 hyperactivation by CAMDI deletion causes psychiatric behaviors, at least in part, through delayed radial migration due to impaired centrosomes.


Asunto(s)
Histona Desacetilasas/metabolismo , Trastornos Mentales/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/fisiología , Acetilación , Animales , Trastorno del Espectro Autista/metabolismo , Centrosoma/metabolismo , Centrosoma/patología , Histona Desacetilasa 6 , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Trastornos Mentales/tratamiento farmacológico , Ratones , Proteínas del Tejido Nervioso/genética , Procesamiento Proteico-Postraduccional , Agitación Psicomotora , Tubulina (Proteína)/metabolismo
20.
J Mol Cell Cardiol ; 100: 43-53, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27677939

RESUMEN

A failing heart shows severe energy insufficiency, and it is presumed that this energy shortage plays a critical role in the development of cardiac dysfunction. However, little is known about the mechanisms that cause energy metabolic alterations in the failing heart. Here, we show that the novel RING-finger protein 207 (RNF207), which is specifically expressed in the heart, plays a role in cardiac energy metabolism. Depletion of RNF207 in neonatal rat cardiomyocytes (NRCs) leads to a reduced cellular concentration of adenosine triphosphate (ATP) and mitochondrial dysfunction. Consistent with this result, we observed here that the expression of RNF207 was significantly reduced in mice with common cardiac diseases including heart failure. Intriguingly, proteomic approaches revealed that RNF207 interacts with the voltage-dependent anion channel (VDAC), which is considered to be a key regulator of mitochondria function, as an RNF207-interacting protein. Our findings indicate that RNF207 is involved in ATP production by cardiomyocytes, suggesting that RNF207 plays an important role in the development of heart failure.


Asunto(s)
Metabolismo Energético , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Línea Celular , Expresión Génica , Humanos , Ratones , Mitocondrias Cardíacas/metabolismo , Especificidad de Órganos/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Estrés Fisiológico , Ubiquitinación , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...