Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(46): 10420-10426, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37955968

RESUMEN

The development of nanolayered materials is one of the greatest challenges in nanoscience. Until now, pseudohalogen-bridged nanosheets using the mechanical exfoliation method have not been reported. A state-of-the-art material, {[FeII(3-acetylpyridine)2][HgII(µ-SCN)4]}n (1), has been developed to achieve the goal. The compound forms a two-dimensional (2D) coordination polymer with weak out-of-plane van der Waals interactions and has an intrinsic tendency to form shear planes perpendicular to the crystallographic c-direction. These structural features predispose 1 to mechanical exfoliation realized by employing the "Scotch-tape method". As a result, nanosheets were fabricated and characterized by digital optical microscopy, scanning electron microscopy, and atomic force microscopy. The nanosheets were found to have a minimum thickness of ∼15 nm and a lateral size of several micrometers. As the first example of thiocyanato-bridged coordination nanosheets, these materials extend the scope of 2D materials and potentially pave the way toward developing nanolayered materials.

2.
J Am Chem Soc ; 145(42): 22934-22944, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37824191

RESUMEN

Knowledge of the magnetic domain is indispensable for understanding the magnetostatic properties of magnets. However, to date, the magnetic domain has not yet been reported in the field of molecule-based magnets. Herein, we study the magnetic domains of molecule-based magnets. Two magnetic films of iron/chromium hexacyanidochromate FexCr1-x[Cr(CN)6]2/3·5H2O (x = 0; Film 1 and x = 0.2; Film 2) were prepared for investigation. The temperature evolution of surface magnetization was measured using magnetic force microscopy. Film 1 showed a magnetic domain below Curie temperature (TC) and its positive-magnetic polarization increased monotonously with decreasing temperature, while Film 2 showed positive magnetic polarization below TC and switches from positive to negative magnetization through a demagnetization state at 146 K. This study originally reports the temperature variation of the magnetization state at the magnetization reversal. The magnetic domains appeared as a maze pattern with an approximate domain size of one-to-several micrometers. This work shows that research on molecule-based magnets can be expanded from magnetochemistry to the magnetostatic engineering of bulk magnets, molecule-based magnetostatic engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...