Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Biol ; 100(1): 131-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37555698

RESUMEN

PURPOSE: Zebrafish, a small fish model, exhibits a multipotent ability for retinal regeneration after damage throughout its lifetime. Compared with zebrafish, birds and mammals exhibit such a regenerative capacity only during the embryonic period, and this capacity decreases with age. In medaka, another small fish model that has also been used extensively in biological research, the retina's inner nuclear layer (INL) failed to regenerate after injury in the hatchling at eight days postfertilization (dpf). We characterized the regenerative process of the embryonic retina when the retinal injury occurred during the early embryonic period in medaka. METHODS: We employed a 10 Gy dose of gamma-ray irradiation to initiate retinal injury in medaka embryos at 3 dpf and performed histopathological analyses up to 21 dpf. RESULTS: One day after irradiation, numerous apoptotic neurons were observed in the INL; however, these neurons were rarely observed in the ciliary marginal zone and the photoreceptor layer. Numerous pyknotic cells were clustered in the irradiated retina until two days after irradiation. These disappeared four days after irradiation, but the abnormal bridging structures between the INL and ganglion cell layer (GCL) were present until 11 days after irradiation, and the neural layers were completely regenerated 18 days after irradiation. After gamma-ray irradiation, the spindle-like Müller glial cells in the INL became rounder but did not lose their ability to express SOX2. CONCLUSIONS: Irradiated retina at 3 dpf of medaka embryos could be completely regenerated at 18 days after irradiation (21 dpf), although the abnormal layer structures bridging the INL and GCL were transiently formed in the retinas of all the irradiated embryos. Four days after irradiation, embryonic medaka Müller glia were reduced in number but maintained SOX2 expression as in nonirradiated embryos. This finding contrasts with previous reports that 8 dpf medaka larvae could not fully regenerate damaged retinas because of loss of SOX2 expression.


Asunto(s)
Oryzias , Animales , Pez Cebra , Retina/lesiones , Retina/patología , Neuroglía , Desarrollo Embrionario , Mamíferos
2.
Int J Radiat Biol ; 99(4): 663-672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35939385

RESUMEN

PURPOSE: Hematopoietic tissues of vertebrates are highly radiation sensitive and the effects of ionizing radiation on the hematopoiesis have been studied in mammals and teleosts for decades. In this study, radiation responses in the kidney, the main hematopoietic organ in teleosts, were investigated in Japanese medaka (Oryzias latipes), which has been a model animal and a large body of knowledge has been accumulated in radiation biology. METHODS: Kidney, the main hematopoietic tissue of adult medaka fish, was locally irradiated using proton and carbon ion beams irradiation system of Takasaki Ion Accelerator for Advanced Radiation Application (TIARA), QST, and the effects on peripheral blood cells and histology of the kidney were investigated. RESULTS: When only kidneys were locally irradiated with proton or carbon ion beam (15 Gy), the hematopoietic cells in the irradiated kidney and cell density in the peripheral blood decreased 7 days after the irradiation in the same manner as after the whole-body irradiation with γ-rays (15 Gy). These results demonstrate that direct irradiation of the hematopoietic cells in the kidney induced cell death and/or cell cycle arrest and stopped the supply of erythroid cells. Then, the cell density in the peripheral blood recovered to the control level within 4 days and 7 days after the γ-ray and proton beam irradiation (15 Gy), respectively, while the cell density in the peripheral blood did not recover after the carbon ion beam irradiation (15 Gy). The hematopoietic cells in the irradiated kidneys temporarily decreased and recovered to the control level within 21 days after the γ-ray or proton beam irradiation (15 Gy), while it did not recover after the carbon ion beam irradiation (15 Gy). In contrast, the recovery of the cell density in the peripheral blood delayed when anemic medaka were irradiated 1 day after the administration of phenylhydrazine. With and without γ-ray irradiation, a large number of hematopoietic cells was still proliferating in the kidney 7 days after the anemia induction. CONCLUSIONS: The results obtained strongly suggest that the hematopoietic stem cells in medaka kidney prioritize to proliferate and increase peripheral blood cells to eliminate anemia, even when they are damaged by high-dose irradiation.


Asunto(s)
Anemia , Oryzias , Animales , Oryzias/metabolismo , Protones , Rayos gamma/efectos adversos , Células Madre Hematopoyéticas , Mamíferos
3.
Radiat Oncol ; 17(1): 183, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380314

RESUMEN

BACKGROUND: The DNA damage response (DDR) is a mechanism that protects cells against radiation-induced oxidative DNA damage by causing cell cycle arrest and apoptosis. TP63 is a member of the tumour suppressor TP53 gene family, and ΔNp63α, a TP63 splicing variant, is constitutively expressed in the stem cell-containing basal layer of stratified epithelial tissues, including the mammary gland, where it plays a critical role in stemness and tissue development. ΔNp63α has been reported to transcriptionally inhibit the tumour suppression protein p53. This p53-repressive activity may cause genomic instability in epithelial stem cells exposed to radiation. In this study, we analysed the inhibitory effect of ΔNp63α on radiation-induced DDR. METHODS: To elucidate the role of the p53-repressive effect of ΔNp63α in radiation response, we performed a p63-siRNA knockdown experiment using human mammary epithelial cells (HMECs) expressing ΔNp63α and then performed ectopic and entopic expression experiments using human induced pluripotent stem cells (hiPSCs). After irradiation, the expression of DDR-related genes and proteins in ΔNp63α-expressing and control cells was analysed by RT-qPCR, Western blotting, and flow cytometry. RESULTS: The mRNA/protein expression levels of BAX and p21 were significantly increased in p63-siRNA-treated HMECs (sip63) after X-ray irradiation (4 Gy, 0.7 Gy/min) but not in scramble-siRNA treated HMECs (scr). Transcriptomic analysis showed decreased RNA expression of cell cycle-related genes and increased expression of programmed cell death-related genes in sip63 cells compared to scr cells. Furthermore, flow cytometric analysis revealed an increase in apoptotic cells and a decrease in 5-ethynyl-2´-deoxyuridine uptake in sip63 cells compared to scr cells. On the other hand, both the ectopic and entopic expression of ΔNp63α in apoptosis-sensitive hiPSCs reduced the expression levels of BAX after irradiation and significantly decreased the number of apoptotic cells induced by radiation. CONCLUSION: Taken together, these results indicate that ΔNp63α represses p53-related radiation-induced DDR, thereby potentially causing genomic instability in epithelial stem cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias , Humanos , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Daño del ADN , Genes p53 , Inestabilidad Genómica , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasias/genética , ARN Interferente Pequeño , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Radiat Prot Dosimetry ; 198(13-15): 1036-1046, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083756

RESUMEN

The uncertain cancer risk of protracted radiation exposure at low dose rates is an important issue in radiological protection. Tissue stem/progenitor cells are a supposed origin of cancer and may contribute to the dose-rate effect on carcinogenesis. The authors have shown that female rats subjected to continuous whole body γ irradiation as juveniles or young adults have a notably reduced incidence of mammary cancer as compared with those irradiated acutely. Experiments using the mammosphere formation assay suggested the presence of radioresistant progenitor cells. Cell sorting indicated that basal progenitor cells in rat mammary gland were more resistant than luminal progenitors to killing by acute radiation, especially at high doses. Thus, the evidence indicates a cell-type-dependent inactivation of mammary cells that manifests only at high acute doses, implying a link to the observed dose-rate effect on carcinogenesis.


Asunto(s)
Exposición a la Radiación , Protección Radiológica , Animales , Carcinogénesis , Transformación Celular Neoplásica , Femenino , Glándulas Mamarias Animales/efectos de la radiación , Células Madre/efectos de la radiación
5.
Cancer Sci ; 113(10): 3362-3375, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35851737

RESUMEN

Women who are heterozygous for deleterious BRCA1 germline mutations harbor a high risk of hereditary breast cancer. Previous Brca1-heterozygous animal models do not recapitulate the breast cancer phenotype, and thus all currently used knockout models adopt conditional, mammary-specific homozygous Brca1 loss or addition of Trp53 deficiency. Herein, we report the creation and characterization of a novel Brca1 mutant rat model harboring the germline L63X mutation, which mimics a founder mutation in Japan, through CRISPR-Cas9-based genome editing. Homozygotes (Brca1L63X/L63X ) were embryonic lethal, whereas heterozygotes (Brca1L63X/+ ) showed apparently normal development. Without carcinogen exposure, heterozygotes developed mammary carcinoma at a comparable incidence rate with their wild-type (WT) littermates during their lifetime. Intraperitoneal injection of 1-methyl-1-nitrosourea (25 or 50 mg/kg) at 7 weeks of age induced mammary carcinogenesis at comparable levels among the heterozygotes and their littermates. After exposure to ionizing radiation (0.1-2 Gy) at 7 weeks of age, the heterozygotes, but not WT littermates, displayed dose-dependent mammary carcinogenesis with 0.8 Gy-1 excess in hazard ratio during their middle age; the relative susceptibility of the heterozygotes was more prominent when rats were irradiated at 3 weeks of age. The heterozygotes had tumors with a lower estrogen receptor α immunopositivity and no evidence of somatic mutations of the WT allele. The Brca1L63X/+ rats thus offer the first single-mutation, heterozygous model of BRCA1-associated breast cancer, especially with exposure to a DNA break-inducing carcinogen. This implies that such carcinogens are causative and a key to breast cancer prevention in individuals who carry high-risk BRCA1 mutations.


Asunto(s)
Neoplasias de la Mama , Neoplasias Inducidas por Radiación , Animales , Proteína BRCA1/genética , Neoplasias de la Mama/genética , Carcinógenos , Transformación Celular Neoplásica , Receptor alfa de Estrógeno/genética , Femenino , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad , Neoplasias Inducidas por Radiación/genética , Ratas
6.
J Radiat Res ; 62(1): 12-24, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231252

RESUMEN

Transgenic expression in medaka of the Xiphophorus oncogene xmrk, under a pigment cell specific mitf promoter, induces hyperpigmentation and pigment cell tumors. In this study, we crossed the Hd-rR and HNI inbred strains because complete genome information is readily available for molecular and genetic analysis. We prepared an Hd-rR (p53+/-, p53-/-) and Hd-rR HNI hybrid (p53+/-) fish-based xmrk model system to study the progression of pigment cells from hyperpigmentation to malignant tumors on different genetic backgrounds. In all strains examined, most of the initial hyperpigmentation occurred in the posterior region. On the Hd-rR background, mitf:xmrk-induced tumorigenesis was less frequent in p53+/- fish than in p53-/- fish. The incidence of hyperpigmentation was more frequent in Hd-rR/HNI hybrids than in Hd-rR homozygotes; however, the frequency of malignant tumors was low, which suggested the presence of a tumor suppressor in HNI genetic background fish. The effects on tumorigenesis in xmrk-transgenic immature medaka of a single 1.3 Gy irradiation was assessed by quantifying tumor progression over 4 consecutive months. The results demonstrate that irradiation has a different level of suppressive effect on the frequency of hyperpigmentation in purebred Hd-rR compared with hybrids.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/efectos de la radiación , Ciprinodontiformes/genética , Radiación Ionizante , Transgenes , Animales , Animales Modificados Genéticamente , Carcinogénesis/patología , Relación Dosis-Respuesta en la Radiación , Proteínas de Peces/genética , Rayos gamma , Hibridación Genética , Hiperpigmentación/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteína p53 Supresora de Tumor/genética
7.
Biology (Basel) ; 9(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291358

RESUMEN

It has been widely accepted that prenatal exposure to ionizing radiation (IR) can affect embryonic and fetal development in mammals, depending on dose and gestational age of the exposure, however, the precise machinery underlying the IR-induced disturbance of embryonic development is still remained elusive. In this study, we examined the effects of gamma-ray irradiation on blastula embryos of medaka and found transient delay of brain development even when they hatched normally with low dose irradiation (2 and 5 Gy). In contrast, irradiation of higher dose of gamma-rays (10 Gy) killed the embryos with malformations before hatching. We then conducted targeted irradiation of blastoderm with a collimated carbon-ion microbeam. When a part (about 4, 10 and 25%) of blastoderm cells were injured by lethal dose (50 Gy) of carbon-ion microbeam irradiation, loss of about 10% or less of blastoderm cells induced only the transient delay of brain development and the embryos hatched normally, whereas embryos with about 25% of their blastoderm cells were irradiated stopped development at neurula stage and died. These findings strongly suggest that the developmental disturbance in the IR irradiated embryos is determined by the proportion of severely injured cells in the blastoderm.

8.
Radiat Res ; 194(1): 22-37, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32352870

RESUMEN

Breast tissue is very susceptible to radiation-induced carcinogenesis, and mammary stem/progenitor cells are potentially important targets of this. The mammary epithelium is maintained as two mostly independent lineages of luminal and basal cells. To elucidate their immediate radiation responses, we analyzed the mammary glands of female Sprague-Dawley rats, a radiation carcinogenesis model, using colony formation, flow cytometry and immunofluorescence. The results revealed that flow cytometry successfully fractionates rat mammary cells into CD49fhi CD24lo basal, CD49fmed CD24hi luminal progenitor, and CD49flo CD24hi mature luminal populations, resembling human breast, rather than mouse tissues. The colony-forming ability of the basal cells was more radiosensitive than the luminal progenitor cells. Flow cytometry and immunofluorescence showed more efficient cell cycle arrest, γ-H2AX responses, and apoptosis in the irradiated luminal progenitor cells, than in the basal cells. These results provide important insights into the early phase of radiation-induced breast cancer.


Asunto(s)
Citometría de Flujo , Glándulas Mamarias Animales/citología , Animales , Apoptosis/efectos de la radiación , Puntos de Control del Ciclo Celular/efectos de la radiación , Daño del ADN , Glándulas Mamarias Animales/efectos de la radiación , Ratas , Células Madre/citología
9.
PLoS One ; 13(8): e0201790, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30075024

RESUMEN

Induction of apoptosis in response to various genotoxic stresses could block transmission of teratogenic mutations to progeny cells. The severity of biological effects following irradiation depends on the stage at which embryos are irradiated during embryogenesis. We reported previously that irradiation of medaka embryos 3 days post fertilization (dpf) with 10 Gy of gamma rays induced high incidence of apoptotic cells in the mid-brain, however, the embryos hatched normally and developed without apparent malformations. To determine the severity of biological effects following irradiation during a later period of embryogenesis, embryos of various developmental stages were irradiated with 15 Gy of gamma rays and examined for apoptotic induction at 24 h after irradiation in the brain, eyes and pharyngeal epithelium tissues, which are actively proliferating and sensitive to irradiation. Embryos irradiated at 3 dpf exhibited many apoptotic cells in these tissues, and all of them died due to severe malformations. In contrast, embryos irradiated at 5 dpf showed no apoptotic cells and subsequently hatched without apparent malformations. Embryos irradiated at 4 dpf had relatively low numbers of apoptotic cells compared to those irradiated at 3 dpf, thereafter most of them died within 1 week of hatching. In adult medaka, apoptotic cells were not found in these tissues following irradiation, suggesting that apoptosis occurs during a restricted time period of medaka embryogenesis throughout the life. No apoptotic cells were found in irradiated intestinal tissue, which is known to be susceptible to radiation damage in mammals, whereas many apoptotic cells were found in proliferating spermatogonial cells in the mature testis following irradiation. Taken together, with the exception of testicular tissue, the results suggest a limited period during medaka embryogenesis in which irradiation-induced apoptosis can occur.


Asunto(s)
Apoptosis/efectos de la radiación , Embrión no Mamífero/efectos de la radiación , Desarrollo Embrionario/efectos de la radiación , Oryzias/embriología , Animales , Animales Endogámicos , Puntos de Control del Ciclo Celular/efectos de la radiación , Embrión no Mamífero/patología , Embrión no Mamífero/ultraestructura , Rayos gamma , Imagenología Tridimensional , Masculino , Microscopía Electrónica , Tolerancia a Radiación , Factores de Tiempo
10.
Int J Mol Sci ; 18(7)2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28677658

RESUMEN

Microglia remove apoptotic cells by phagocytosis when the central nervous system is injured in vertebrates. Ionizing irradiation (IR) induces apoptosis and microglial activation in embryonic midbrain of medaka (Oryzias latipes), where apolipoprotein E (ApoE) is upregulated in the later phase of activation of microglia In this study, we found that another microglial marker, l-plastin (lymphocyte cytosolic protein 1), was upregulated at the initial phase of the IR-induced phagocytosis when activated microglia changed their morphology and increased motility to migrate. We further conducted targeted irradiation to the embryonic midbrain using a collimated microbeam of carbon ions (250 µm diameter) and found that the l-plastin upregulation was induced only in the microglia located in the irradiated area. Then, the activated microglia might migrate outside of the irradiated area and spread through over the embryonic brain, expressing ApoE and with activated morphology, for longer than 3 days after the irradiation. These findings suggest that l-plastin and ApoE can be the biomarkers of the activated microglia in the initial and later phase, respectively, in the medaka embryonic brain and that the abscopal and persisted activation of microglia by IR irradiation could be a cause of the abscopal and/or adverse effects following irradiation.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Iones Pesados , Microglía/metabolismo , Microglía/efectos de la radiación , Radiación Ionizante , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apoptosis/efectos de la radiación , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Embrión no Mamífero , Peces , Expresión Génica , Iones Pesados/efectos adversos , Neuronas/metabolismo , Neuronas/efectos de la radiación , Oryzias
11.
Sci Rep ; 6: 28691, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27345436

RESUMEN

Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area.


Asunto(s)
Radioterapia de Iones Pesados/efectos adversos , Riñón/patología , Miocardio/patología , Oryzias/metabolismo , Traumatismos Experimentales por Radiación/patología , Animales , Riñón/metabolismo , Miocardio/metabolismo , Traumatismos Experimentales por Radiación/metabolismo
12.
J Radiat Res ; 57(1): 9-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26410759

RESUMEN

The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain.


Asunto(s)
Encéfalo/patología , Encéfalo/efectos de la radiación , Autorrenovación de las Células/efectos de la radiación , Oryzias/metabolismo , Traumatismos por Radiación/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Encéfalo/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Embrión no Mamífero/efectos de la radiación , Rayos gamma , Oryzias/embriología , Proteína p53 Supresora de Tumor/deficiencia
13.
PLoS One ; 10(6): e0127325, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26061282

RESUMEN

Radiation therapy (RT) is pivotal in the treatment of many central nervous system (CNS) pathologies; however, exposure to RT in children is associated with a higher risk of secondary CNS tumors. Although recent research interest has focused on the reparative and therapeutic role of microglia, their recruitment following RT has not been elucidated, especially in the developing CNS. Here, we investigated the spatiotemporal dynamics of microglia during tissue repair in the irradiated embryonic medaka brain by whole-mount in situ hybridization using a probe for Apolipoprotein E (ApoE), a marker for activated microglia in teleosts. Three-dimensional imaging of the distribution of ApoE-expressing microglia in the irradiated embryonic brain clearly showed that ApoE-expressing microglia were abundant only in the late phase of phagocytosis during tissue repair induced by irradiation, while few microglia expressed ApoE in the initial phase of phagocytosis. This strongly suggests that ApoE has a significant function in the late phase of phagocytosis by microglia in the medaka brain. In addition, the distribution of microglia in p53-deficient embryos at the late phase of phagocytosis was almost the same as in wild-type embryos, despite the low numbers of irradiation-induced apoptotic neurons, suggesting that constant numbers of activated microglia were recruited at the late phase of phagocytosis irrespective of the extent of neuronal injury. This medaka model of microglia demonstrated specific recruitment after irradiation in the developing CNS and could provide a useful potential therapeutic strategy to counteract the detrimental effects of RT.


Asunto(s)
Sistema Nervioso Central/fisiología , Microglía/fisiología , Oryzias/embriología , Animales , Apoptosis/efectos de la radiación , Sistema Nervioso Central/efectos de la radiación , Radiación Ionizante
14.
J Biosci Bioeng ; 116(3): 333-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23651809

RESUMEN

Cocktail δ-integration was applied to improve ethanol production from xylose in Saccharomyces cerevisiae. Two hundred of recombinant S. cerevisiae strains possessing various copies of XYL1, XYL2, and XKS1 genes were constructed by cocktail δ-integration. Efficient strains with efficient ethanol production from xylose were successfully obtained by the fermentation test.


Asunto(s)
Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Endo-1,4-beta Xilanasas/genética , Fermentación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...