Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biosci Bioeng ; 135(5): 411-416, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36925357

RESUMEN

Suspension cultures are widely used for cell expansion in regenerative medicine and production. Shaking culture is one of the useful suspension culture methods that ensures gentle agitation. There are other shaking methods, including orbital shaking, reciprocating, and rocking; however, optimizing the shaking conditions for each method to meet cell culture requirements is time-consuming. In this study, we used a particle-tracking-based strategy for optimizing the agitation conditions. When the average accelerations of aggregates were calculated, high acceleration occurred periodically, and acceleration of the aggregates in orbital shaking was stable. Furthermore, the number of dead cells correlated with the average time of acceleration. We observed that cell growth was ideally maintained by factors such as optimal acceleration, aggregate formation, and cell death. These results indicate that the image-based analyses of aggregates help optimize the agitation conditions for the shaking suspension culture of induced pluripotent stem cells (iPSCs).


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Diferenciación Celular/fisiología
2.
Biotechnol Prog ; 37(2): e3100, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33169533

RESUMEN

Suspension culture is an important method used in the industrial preparation of pluripotent stem cells (PSCs), for regenerative therapy and drug screening. Generally, a suspension culture requires agitation to keep PSC aggregates suspended and to promote mass transfer, but agitation also causes cell damage. In this study, we investigated the use of a Bingham plastic fluid, supplemented with a polysaccharide-based polymer, to preserve PSCs from cell damage in suspension culture. Rheometric analysis showed that the culture medium gained yield stress and became a Bingham plastic fluid, after supplementation with the polymer FP003. A growth/death analysis revealed that 2 days of aggregate formation and 2 days of suspension in the Bingham plastic medium improved cell growth and prevented cell death. After the initial aggregation step, whereas strong agitation (120 rpm) of a conventional culture medium resulted in massive cell death, in the Bingham plastic fluid we obtained the same growth as the normal culture with optimal agitation (90 rpm). This indicates that Bingham plastic fluid protected cells from shear stress in suspension culture and could be used to enhance their robustness when developing a large-scale.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Plásticos/farmacología , Reactores Biológicos , Agregación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Estrés Mecánico , Suspensiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA