Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948792

RESUMEN

The development of multicellular tissues requires both local and global coordination of cell polarization, however, the mechanisms underlying their interplay are poorly understood. In Arabidopsis, leaf epidermal pavement cells (PC) develop a puzzle-piece shape locally coordinated through apoplastic auxin signaling. Here we show auxin also globally coordinates interdigitation by activating the TIR1/AFB-dependent nuclear signaling pathway. This pathway promotes a transient maximum of auxin at the cotyledon tip, which then moves across the leaf activating local PC polarization, as demonstrated by locally uncaged auxin globally rescuing defects in tir1;afb1;afb2;afb4;afb5 mutant but not in tmk1;tmk2;tmk3;tmk4 mutants. Our findings show that hierarchically integrated global and local auxin signaling systems, which respectively depend on TIR1/AFB-dependent gene transcription in the nucleus and TMK-mediated rapid activation of ROP GTPases at the cell surface, control PC interdigitation patterns in Arabidopsis cotyledons, revealing a mechanism for coordinating a local cellular process with the development of whole tissues.

2.
Front Plant Sci ; 14: 1177058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223808

RESUMEN

MYB98 is a key regulator of the genetic network behind pollen tube attraction toward the female gametophyte. MYB98 is specifically expressed in the synergid cells (SCs), a female gametophyte component cells specialized for pollen tube attraction. However, it had not been clear how exactly MYB98 achieves this specific expression pattern. In the current study, we have determined that a normal SC-specific expression of MYB98 is dependent on a 16-bp-long cis-regulatory element, CATTTACACATTAAAA, freshly named as the "S ynergid-specific A ctivation E lement of M YB98" (SaeM). An 84 bp fragment harboring SaeM in the middle was sufficient to drive exclusively SC-specific expression. The element was present in a significantly large proportion of SC-specific gene promoters and in the promoter of MYB98 homologous genes in the Brassicaceae (pMYB98s). Significance of such family-wide SaeM-like element conservation in exclusive SC-specific expression was confirmed by the Arabidopsis-like activation feature of Brassica oleracea-derived pMYB98 and absence of such feature of pMYB98 derived from a non-Brassicaceae member Prunus persica. Additionally, the yeast-one-hybrid assay showed that the SaeM can be recognized by ANTHOCYANINLESS2 (ANL2) and DAP-seq data further suggested for additional three ANL2 homologs targeting the similar cis-element. Overall, our study has concluded that SaeM plays a crucial role in driving exclusively SC-specific expression of MYB98 and strongly suggests for the involvement of ANL2 and its homologs in its dynamic regulation in planta. Future study on the transcription factors is expected to shed more light on the mechanism behind the process.

3.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175817

RESUMEN

Secondary cell wall (SCW) thickening has a significant effect on the growth and development of plants, as well as in the resistance to various biotic and abiotic stresses. Lignin accounts for the strength of SCW. It is synthesized through the phenylpropanoid pathway that also leads to flavonoid synthesis. The coupling strategies for lignin and flavonoid syntheses are diverse in plants. How their syntheses are balanced by transcriptional regulation in fleshy fruits is still unclear. The diploid strawberry (Fragaria vesca) is a model for fleshy fruits research due to its small genome and wide scope of genetic transformation. SCW thickening is regulated by a multilevel transcriptional regulatory network wherein vascular-related NAC domains (VNDs) act as key regulators. In this study, we systematically characterized VNDs in Fragaria vesca and explored their functions. The overexpression of FvVND4c in diploid strawberry fruits resulted in SCW thickening and fruit color changes accompanied with the accumulation of lignin and flavonoids. Genes related to these phenotypes were also induced upon FvVND4c overexpression. Among the induced genes, we found FvMYB46 to be a direct downstream regulator of FvVND4c. The overexpression of FvMYB46 resulted in similar phenotypes as FvVND4c, except for the color change. Transcriptomic analyses suggest that both FvVND4c and FvMYB46 act on phenylpropanoid and flavonoid biosynthesis pathways, and induce lignin synthesis for SCW. These results suggest that FvVND4c and FvMYB46 cooperatively regulate SCW thickening and flavonoid accumulation in Fragaria vesca.


Asunto(s)
Fragaria , Fragaria/metabolismo , Flavonoides/farmacología , Expresión Génica Ectópica , Lignina/metabolismo , Frutas/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36361997

RESUMEN

Secondary cell wall thickening plays a crucial role in plant growth and development. Diploid woodland strawberry (Fragaria vesca) is an excellent model for studying fruit development, but its molecular control of secondary wall thickening is largely unknown. Previous studies have shown that Arabidopsis NAC secondary wall thickening promoting factor1 (AtNST1) and related proteins are master regulators of xylem fiber cell differentiation in multiple plant species. In this study, a NST1-like gene, FvNST1b, was isolated and characterized from strawberry. Sequence alignment and phylogenetic analysis showed that the FvNST1b protein contains a highly conserved NAC domain, and it belongs to the same family as AtNST1. Overexpression of FvNST1b in wild-type Arabidopsis caused extreme dwarfism, induced ectopic thickening of secondary walls in various tissues, and upregulated the expression of genes related to secondary cell wall synthesis. In addition, transient overexpression of FvNST1b in wild-type Fragaria vesca fruit produced cells resembling tracheary elements. These results suggest that FvNST1b positively regulates secondary cell wall formation as orthologous genes from other species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fragaria , Fragaria/genética , Fragaria/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(47): e2117803119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375069

RESUMEN

The formation of cell polarity is essential for many developmental processes such as polar cell growth and spatial patterning of cell division. A plant-specific ROP (Rho-like GTPases from Plants) subfamily of conserved Rho GTPase plays a crucial role in the regulation of cell polarity. However, the functional study of ROPs in angiosperm is challenging because of their functional redundancy. The Marchantia polymorpha genome encodes a single ROP gene, MpROP, providing an excellent genetic system to study ROP-dependent signaling pathways. Mprop knockout mutants exhibited rhizoid growth defects, and MpROP was localized at the tip of elongating rhizoids, establishing a role for MpROP in the control of polar cell growth and its functional conservation in plants. Furthermore, the Mprop knockout mutant showed defects in the formation of meristem notches associated with disorganized cell division patterns. These results reveal a critical function of MpROP in the regulation of plant development. Interestingly, these phenotypes were complemented not only by MpROP but also Arabidopsis AtROP2, supporting the conservation of ROP's function among land plants. Our results demonstrate a great potential for M. polymorpha as a powerful genetic system for functional and mechanistic elucidation of ROP signaling pathways during plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Marchantia , Meristema/genética , Meristema/metabolismo , Arabidopsis/metabolismo , Marchantia/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular/genética , Plantas/metabolismo
6.
J Hazard Mater ; 421: 126802, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34396977

RESUMEN

The coexistence of hazardous substances enhances their toxicities to plants, but its mechanism is still unclear due to the unknown cytochemical behavior of hazardous substance in plants. In this study, by using interdisciplinary methods, we observed the cytochemical behavior of coexisting hazardous substances {terbium [Tb(III)], benzo(a)pyrene (BaP) and cadmium [Cd(II)] in environments} in plants and thus identified a new mechanism by which coexisting hazardous substances in environments enhance their toxicities to plants. First, Tb(III) at environmental exposure level (1.70 × 10-10 g/L) breaks the inert rule of clathrin-mediated endocytosis (CME) in leaf cells. Specifically, Tb(III) binds to its receptor [FASCICLIN-like arabinogalactan protein 17 (FLA17)] on the plasma membrane of leaf cells and then docks to an intracellular adaptor protein [adaptor protein 2 (AP2)] to form ternary complex [Tb(III)-FLA17-AP2], which finally initiates CME pathway in leaf cells. Second, coexisting Tb(III), BaP and Cd(II) in environments are simultaneously transported into leaf cells via Tb(III)-initiated CME pathway, leading to the accumulation of them in leaf cells. Finally, these accumulated hazardous substances simultaneously poison plant leaf cells. These results provide theoretical and experimental bases for elucidating the mechanisms of hazardous substances in environments poisoning plants, evaluating their risks, and protecting ecosystems.


Asunto(s)
Clatrina , Sustancias Peligrosas , Ecosistema , Endocitosis , Sustancias Peligrosas/toxicidad , Plantas
7.
Nat Commun ; 12(1): 4327, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267202

RESUMEN

Trivalent rare earth elements (REEs) are widely used in agriculture. Aerially applied REEs enter leaf epidermal cells by endocytosis and act systemically to improve the growth of the whole plant. The mechanistic basis of their systemic activity is unclear. Here, we show that treatment of Arabidopsis leaves with trivalent lanthanum [La(III)], a representative of REEs, triggers systemic endocytosis from leaves to roots. La(III)-induced systemic endocytosis requires AtrbohD-mediated reactive oxygen species production and jasmonic acid. Systemic endocytosis impacts the accumulation of mineral elements and the development of roots consistent with the growth promoting effects induced by aerially applied REEs. These findings provide insights into the mechanistic basis of REE activity in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Endocitosis/efectos de los fármacos , Lantano/farmacología , NADPH Oxidasas/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Endocitosis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Minerales/metabolismo , NADPH Oxidasas/genética , Oxilipinas/metabolismo , Células Vegetales/efectos de los fármacos , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal
8.
Plant Physiol ; 185(1): 137-145, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631800

RESUMEN

The progression of the cell cycle is continuous in most cells, but gametes (sperm and egg cells) exhibit an arrest of the cell cycle to await fertilization to form a zygote, which then continues through the subsequent phases to complete cell division. The phase in which gametes of flowering plants arrest has been a matter of debate, since different phases have been reported for the gametes of different species. In this study, we reassessed the phase of cell-cycle arrest in the gametes of two species, Arabidopsis (Arabidopsis thaliana) and Torenia fournieri. We first showed that 4', 6-diamidino-2-phenylindole staining was not feasible to detect changes in gametic nuclear DNA in T. fournieri. Next, using 5-ethynyl-2'-deoxyuridine (EdU) staining that detects DNA replication by labeling the EdU absorbed by deoxyribonucleic acid, we found that the replication of nuclear DNA did not occur during gamete development but during zygote development, revealing that the gametes of these species have a haploid nuclear DNA content before fertilization. We thus propose that gametes in the G1 phase participate in the fertilization event in Arabidopsis and T. fournieri.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Replicación del ADN , Lamiales/crecimiento & desarrollo , Lamiales/genética , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo , Arabidopsis/metabolismo , Variación Genética , Genotipo , Lamiales/metabolismo , Magnoliopsida/genética , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(28): 14349-14357, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239335

RESUMEN

Endocytosis is essential to all eukaryotes, but how cargoes are selected for internalization remains poorly characterized. Extracellular cargoes are thought to be selected by transmembrane receptors that bind intracellular adaptors proteins to initiate endocytosis. Here, we report a mechanism for clathrin-mediated endocytosis (CME) of extracellular lanthanum [La(III)] cargoes, which requires extracellular arabinogalactan proteins (AGPs) that are anchored on the outer face of the plasma membrane. AGPs were colocalized with La(III) on the cell surface and in La(III)-induced endocytic vesicles in Arabidopsis leaf cells. Superresolution imaging showed that La(III) triggered AGP movement across the plasma membrane. AGPs were then colocalized and physically associated with the µ subunit of the intracellular adaptor protein 2 (AP2) complexes. The AGP-AP2 interaction was independent of CME, whereas AGP's internalization required CME and AP2. Moreover, we show that AGP-dependent endocytosis in the presence of La(III) also occurred in human cells. These findings indicate that extracellular AGPs act as conserved CME cargo receptors, thus challenging the current paradigm about endocytosis of extracellular cargoes.


Asunto(s)
Endocitosis/genética , Galactanos/metabolismo , Lantano/farmacología , Metales de Tierras Raras/farmacología , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Membrana Celular/efectos de los fármacos , Clatrina/química , Endocitosis/efectos de los fármacos , Galactanos/genética , Humanos , Lantano/química , Lantano/metabolismo , Metales de Tierras Raras/química , Metales de Tierras Raras/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(49): E11551-E11560, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30446614

RESUMEN

Resistance (R) genes encode intracellular nucleotide-binding/leucine-rich repeat-containing (NLR) family proteins that serve as critical plant immune receptors to induce effector-triggered immunity (ETI). NLR proteins possess a tripartite domain architecture consisting of an N-terminal variable region, a central nucleotide-binding domain, and a C-terminal leucine-rich repeat. N-terminal coiled-coil (CC) or Toll-interleukin 1 receptor (TIR) domains of R proteins appear to serve as platforms to trigger immune responses, because overexpression of the CC or TIR domain of some R proteins is sufficient to induce an immune response. Because direct downstream signaling molecules of R proteins remain obscure, the molecular mechanisms by which R proteins regulate downstream signaling are largely unknown. We reported previously that a rice R protein named Pit triggers ETI through a small GTPase, OsRac1, although how Pit activates OsRac1 is unclear. Here, we identified OsSPK1, a DOCK family guanine nucleotide exchange factor, as an interactor of Pit and activator for OsRac1. OsSPK1 contributes to signaling by two disease-resistance genes, Pit and Pia, against the rice blast fungus Magnaporthe oryzae and facilitates OsRac1 activation in vitro and in vivo. The CC domain of Pit is required for its binding to OsSPK1, OsRac1 activation, and the induction of cell death. Overall, we conclude that OsSPK1 is a direct and key signaling target of Pit-mediated immunity. Our results shed light on how R proteins trigger ETI through direct downstream molecules.


Asunto(s)
Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Magnaporthe , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética
11.
Plant Methods ; 14: 56, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30002723

RESUMEN

BACKGROUND: Small GTPases act as molecular switches that regulate various plant responses such as disease resistance, pollen tube growth, root hair development, cell wall patterning and hormone responses. Thus, to monitor their activation status within plant cells is believed to be the key step in understanding their roles. RESULTS: We have established a plant version of a Förster resonance energy transfer (FRET) probe called Ras and interacting protein chimeric unit (Raichu) that can successfully monitor activation of the rice small GTPase OsRac1 during various defence responses in cells. Here, we describe the protocol for visualizing spatiotemporal activity of plant Rac/ROP GTPase in living plant cells, transfection of rice protoplasts with Raichu-OsRac1 and acquisition of FRET images. CONCLUSIONS: Our protocol should be adaptable for monitoring activation for other plant small GTPases and protein-protein interactions for other FRET sensors in various plant cells.

12.
Plant J ; 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29882345

RESUMEN

Changes in the amount of mitochondrial DNA (mtDNA) have never been investigated in plant zygotes or early plant embryos due to the difficulty in isolating these cells, although such changes have been investigated in mammalian embryos. Using the single-cell quantitative real-time polymerase chain reaction (PCR) and laser confocal microscopy, we surveyed the changes in mtDNA levels during early embryogenesis in Torenia fournieri and Arabidopsis thaliana. In contrast with the amount of mtDNA in early mammalian embryos, which does not change, we found that mtDNA doubling occurred during zygotic development in T. fournieri and during two-cell proembryo development in A. thaliana. These findings reveal that mtDNA doubling occurs during early embryogenesis in T. fournieri and A. thaliana, indicating that the dynamics of mtDNA in early plant embryos differs from that in early mammalian embryos.

13.
Proc Natl Acad Sci U S A ; 115(6): 1388-1393, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29363594

RESUMEN

RNA interference (RNAi) in plants can move from cell to cell, allowing for systemic spread of an antiviral immune response. How this cell-to-cell spread of silencing is regulated is currently unknown. Here, we describe that the C4 protein from Tomato yellow leaf curl virus can inhibit the intercellular spread of RNAi. Using this viral protein as a probe, we have identified the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1) as a positive regulator of the cell-to-cell movement of RNAi, and determined that BAM1 and its closest homolog, BAM2, play a redundant role in this process. C4 interacts with the intracellular domain of BAM1 and BAM2 at the plasma membrane and plasmodesmata, the cytoplasmic connections between plant cells, interfering with the function of these RLKs in the cell-to-cell spread of RNAi. Our results identify BAM1 as an element required for the cell-to-cell spread of RNAi and highlight that signaling components have been coopted to play multiple functions in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Proteínas Virales/genética , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Begomovirus/química , Interacciones Huésped-Patógeno/genética , Células Vegetales , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Nicotiana/genética , Proteínas Virales/metabolismo
14.
Sci Rep ; 7: 43112, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28230071

RESUMEN

Soluble guanylate cyclase (sGC) is a heme-containing metalloprotein in NO-sGC-cGMP signaling. NO binds to the heme of sGC to catalyze the synthesis of the second messenger cGMP, which plays a critical role in several physiological processes. However, the molecular mechanism for sGC to mediate the NO signaling remains unclear. Here fluorophore FlAsH-EDT2 and fluorescent proteins were employed to study the NO-induced sGC activation. FlAsH-EDT2 labeling study revealed that NO binding to the H-NOX domain of sGC increased the distance between H-NOX and PAS domain and the separation between H-NOX and coiled-coil domain. The heme pocket conformation changed from "closed" to "open" upon NO binding. In addition, the NO-induced conformational change of sGC was firstly investigated in vivo through fluorescence lifetime imaging microscopy. The results both in vitro and in vivo indicated the conformational change of the catalytic domain of sGC from "open" to "closed" upon NO binding. NO binding to the heme of H-NOX domain caused breaking of Fe-N coordination bond, initiated the domain moving and conformational change, induced the allosteric effect of sGC to trigger the NO-signaling from H-NOX via PAS &coiled-coil to the catalytic domain, and ultimately stimulates the cyclase activity of sGC.


Asunto(s)
Activadores de Enzimas/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/química , Guanilil Ciclasa Soluble/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica/efectos de los fármacos
15.
Science ; 343(6174): 1025-8, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24578577

RESUMEN

Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane-localized transmembrane kinase (TMK) receptor-like kinases interact with ABP1 and transduce auxin signal to activate plasma membrane-associated ROPs [Rho-like guanosine triphosphatases (GTPase) from plants], leading to changes in the cytoskeleton and the shape of leaf pavement cells in Arabidopsis. The interaction between ABP1 and TMK at the cell surface is induced by auxin and requires ABP1 sensing of auxin. These findings show that TMK proteins and ABP1 form a cell surface auxin perception complex that activates ROP signaling pathways, regulating nontranscriptional cytoplasmic responses and associated fundamental processes.


Asunto(s)
Arabidopsis/enzimología , Membrana Celular/enzimología , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Arabidopsis/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas Quinasas/genética , Transducción de Señal
16.
Curr Biol ; 22(14): 1319-25, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22683260

RESUMEN

PIN-FORMED (PIN) protein-mediated auxin polar transport is critically important for development, pattern formation, and morphogenesis in plants. Auxin has been implicated in the regulation of polar auxin transport by inhibiting PIN endocytosis, but how auxin regulates this process is poorly understood. Our genetic screen identified the Arabidopsis SPIKE1 (SPK1) gene whose loss-of-function mutations increased lateral root density and retarded gravitropic responses, as do pin2 knockout mutations. SPK1 belongs to the conserved DHR2-Dock family of Rho guanine nucleotide exchange factors. The spk1 mutations induced PIN2 internalization that was not suppressed by auxin, as did the loss-of-function mutations for Rho-like GTPase from Plants 6 (ROP6)-GTPase or its effector RIC1. Furthermore, SPK1 was required for auxin induction of ROP6 activation. Our results have established a Rho GTPase-based auxin signaling pathway that maintains PIN2 polar distribution to the plasma membrane via inhibition of its internalization in Arabidopsis roots. Our findings provide new insights into signaling mechanisms that underlie the regulation of the dynamic trafficking of PINs required for long-distance auxin transport and that link auxin signaling to PIN-mediated pattern formation and morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Morfogénesis , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal
17.
PLoS Biol ; 10(4): e1001299, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509133

RESUMEN

Cell polarization via asymmetrical distribution of structures or molecules is essential for diverse cellular functions and development of organisms, but how polarity is developmentally controlled has been poorly understood. In plants, the asymmetrical distribution of the PIN-FORMED (PIN) proteins involved in the cellular efflux of the quintessential phytohormone auxin plays a central role in developmental patterning, morphogenesis, and differential growth. Recently we showed that auxin promotes cell interdigitation by activating the Rho family ROP GTPases in leaf epidermal pavement cells. Here we found that auxin activation of the ROP2 signaling pathway regulates the asymmetric distribution of PIN1 by inhibiting its endocytosis. ROP2 inhibits PIN1 endocytosis via the accumulation of cortical actin microfilaments induced by the ROP2 effector protein RIC4. Our findings suggest a link between the developmental auxin signal and polar PIN1 distribution via Rho-dependent cytoskeletal reorganization and reveal the conservation of a design principle for cell polarization that is based on Rho GTPase-mediated inhibition of endocytosis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Polaridad Celular , Clatrina/metabolismo , Endocitosis , Proteínas de Unión al GTP/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Ácidos Indolacéticos/metabolismo , Morfogénesis , Epidermis de la Planta/citología , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Hojas de la Planta/citología , Proteínas Recombinantes/metabolismo , Transducción de Señal , Nicotiana/citología , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo
18.
Small GTPases ; 2(4): 227-232, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22145096

RESUMEN

The investigation of Rho-family GTPases has uncovered mechanisms for spatiotemporal control of cellular processes such as cell polarization, movement, morphogenesis and cell division. Now Rho GTPase plays another leading role in the discovery of a new signaling mechanism for auxin, a multifunctional hormone that regulates pattern formation in plants. Arabidopsis leaf epidermal pavement cells (PCs) develop the puzzle-piece cell shape with interlocking lobes and indentations via interdigitated cellular growth.1 Through the ABP1 (Auxin Binding Protein 1) cell surface receptor, auxin coordinately activates 2 mutually exclusive Rho GTPase signaling pathways that are activated in the complementary lobing and indenting sides of adjacent cells: the ROP2 pathway for lobe formation and the ROP6 pathway for promoting indentation. This new signaling mechanism also involves ROP2-dependent polar accumulation of PIN1 in the plasma membrane, a member of the PIN auxin efflux carrier family that is critical for the formation of various developmental patterns including the PC interdigitation pattern. This Rho-dependent auxin signaling mechanism explains how interdigitated cellular growth is coordinated. In this extra view, we propose that the same mechanism can also explain how a uniform auxin signal initiates the formation of the interdigitated pattern.

19.
Proc Natl Acad Sci U S A ; 108(43): 17850-5, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22006339

RESUMEN

Endomembrane trafficking relies on the coordination of a highly complex, dynamic network of intracellular vesicles. Understanding the network will require a dissection of cargo and vesicle dynamics at the cellular level in vivo. This is also a key to establishing a link between vesicular networks and their functional roles in development. We used a high-content intracellular screen to discover small molecules targeting endomembrane trafficking in vivo in a complex eukaryote, Arabidopsis thaliana. Tens of thousands of molecules were prescreened and a selected subset was interrogated against a panel of plasma membrane (PM) and other endomembrane compartment markers to identify molecules that altered vesicle trafficking. The extensive image dataset was transformed by a flexible algorithm into a marker-by-phenotype-by-treatment time matrix and revealed groups of molecules that induced similar subcellular fingerprints (clusters). This matrix provides a platform for a systems view of trafficking. Molecules from distinct clusters presented avenues and enabled an entry point to dissect recycling at the PM, vacuolar sorting, and cell-plate maturation. Bioactivity in human cells indicated the value of the approach to identifying small molecules that are active in diverse organisms for biology and drug discovery.


Asunto(s)
Algoritmos , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico/fisiología , Células Cultivadas , Análisis por Conglomerados , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Microscopía Confocal , Estructura Molecular , Plantones/metabolismo , Bibliotecas de Moléculas Pequeñas/clasificación , Imagen de Lapso de Tiempo , Nicotiana
20.
Cell Res ; 21(6): 970-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21423279

RESUMEN

Within a multicellular tissue cells may coordinately form a singular or multiple polar axes, but it is unclear whether a common mechanism governs different types of polar axis formation. The phosphorylation status of PIN proteins, which is directly affected by the PINOID (PID) protein kinase and the PP2A protein phosphatase, is known to regulate the apical-basal polarity of PIN localization in bipolar cells of roots and shoot apices. Here, we provide evidence that the phosphorylation status-mediated PIN polarity switch is widely used to modulate cellular processes in Arabidopsis including multipolar pavement cells (PC) with interdigitated lobes and indentations. The degree of PC interdigitation was greatly reduced either when the FYPP1 gene, which encodes a PP2A called phytochrome-associated serine/threonine protein phosphatase, was knocked out or when the PID gene was overexpressed (35S::PID). These genetic modifications caused PIN1 localization to switch from lobe to indentation regions. The PP2A and PID mediated switching of PIN1 localization is strikingly similar to their regulation of the apical-basal polarity switch of PIN proteins in other cells. Our findings suggest a common mechanism for the regulation of PIN1 polarity formation, a fundamental cellular process that is crucial for pattern formation both at the tissue/organ and cellular levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Forma de la Célula/genética , Proteínas de Transporte de Membrana/metabolismo , Epidermis de la Planta/citología , Hojas de la Planta/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Técnicas de Inactivación de Genes , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/genética , Fenotipo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Epidermis de la Planta/fisiología , Hojas de la Planta/fisiología , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...