Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129462

RESUMEN

Accurate understanding of x-ray diagnostics is crucial for both interpreting high-energy-density experiments and testing simulations through quantitative comparisons. X-ray diagnostic models are complex. Past treatments of individual x-ray diagnostics on a case-by-case basis have hindered universal diagnostic understanding. Here, we derive a general formula for modeling the absolute response of non-focusing x-ray diagnostics, such as x-ray imagers, one-dimensional space-resolved spectrometers, and x-ray power diagnostics. The present model is useful for both data modeling and data processing. It naturally accounts for the x-ray crystal broadening. The new model verifies that standard approaches for a crystal response can be good approximations, but they can underestimate the total reflectivity and overestimate spectral resolving power by more than a factor of 2 in some cases near reflectivity edge features. We also find that a frequently used, simplified-crystal-response approximation for processing spectral data can introduce an absolute error of more than an order of magnitude and the relative spectral radiance error of a factor of 3. The present model is derived with straightforward geometric arguments. It is more general and is recommended for developing a unified picture and providing consistent treatment over multiple x-ray diagnostics. Such consistency is crucial for reliable multi-objective data analyses.

2.
Phys Rev Lett ; 127(23): 235001, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936794

RESUMEN

Understanding how atoms interact with hot dense matter is essential for astrophysical and laboratory plasmas. Interactions in high-density plasmas broaden spectral lines, providing a rare window into interactions that govern, for example, radiation transport in stars. However, up to now, spectral line-shape theories employed at least one of three common approximations: second-order Taylor treatment of broadening operator, dipole-only interactions between atom and plasma, and classical treatment of perturbing electrons. In this Letter, we remove all three approximations simultaneously for the first time and test the importance for two applications: neutral hydrogen and highly ionized magnesium and oxygen. We found 15%-50% change in the spectral line widths, which are sufficient to impact applications including white-dwarf mass determination, stellar-opacity research, and laboratory plasma diagnostics.

3.
Phys Rev E ; 104(3-2): 035202, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654098

RESUMEN

We report experimental and modeling results for the charge state distribution of laboratory photoionized neon plasmas in the first systematic study over nearly an order of magnitude range of ionization parameter ξ∝F/N_{e}. The range of ξ is achieved by flexibility in the experimental platform to adjust either the x-ray drive flux F at the sample or the electron number density N_{e} or both. Experimental measurements of photoionized plasma conditions over such a range of parameters enable a stringent test of atomic kinetics models used within codes that are applied to photoionized plasmas in the laboratory and astrophysics. From experimental transmission data, ion areal densities are extracted by spectroscopic analysis that is independent of atomic kinetics modeling. The measurements reveal the net result of the competition between photon-driven ionization and electron-driven recombination atomic processes as a function of ξ as it affects the charge state distribution. Results from radiation-hydrodynamics modeling calculations with detailed inline atomic kinetics modeling are compared with the experimental results. There is good agreement in the mean charge and overall qualitative similarities in the trends observed with ξ but significant quantitative differences in the fractional populations of individual ions.

4.
J Prev Alzheimers Dis ; 8(4): 483-494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34585224

RESUMEN

BACKGROUND: Obesity and diabetes are well-established risk factors of Alzheimer's disease (AD). In the brains of patients with AD and model mice, diabetes-related factors have been implicated in the pathological changes of AD. However, the molecular mechanistic link between the peripheral metabolic state and AD pathophysiology have remained elusive. Endoplasmic reticulum (ER) stress is known as one of the major contributors to the metabolic abnormalities in obesity and diabetes. Interventions aimed at reducing ER stress have been shown to improve the systemic metabolic abnormalities, although their effects on the AD pathology have not been extensively studied. OBJECTIVES: We examined whether interventions targeting ER stress attenuate the obesity/diabetes-induced Aß accumulation in brains. We also aimed to determine whether ER stress that took place in the peripheral tissues or central nervous system was more important in the Aß neuropathology. Furthermore, we explored if age-related metabolic abnormalities and Aß accumulation could be suppressed by reducing ER stress. METHODS: APP transgenic mice (A7-Tg), which exhibit Aß accumulation in the brain, were used as a model of AD to analyze parameters of peripheral metabolic state, ER stress, and Aß pathology in the brain. Intraperitoneal or intracerebroventricular administration of taurodeoxycholic acid (TUDCA), a chemical chaperone, was performed in high-fat diet (HFD)-fed A7-Tg mice for ~1 month, followed by analyses at 9 months of age. Mice fed a normal diet were treated with TUDCA by drinking water for 4 months and intraperitoneally for 1 month in parallel, and analyzed at 15 months of age. RESULTS: Intraperitoneal administration of TUDCA suppressed ER stress in the peripheral tissues and ameliorated the HFD-induced obesity and insulin resistance. Concomitantly, Aß levels in the brain were significantly reduced. In contrast, intracerebroventricular administration of TUDCA had no effect on the Aß levels. Peripheral administration of TUDCA was also effective against the age-related obesity and insulin resistance, and markedly reduced amyloid accumulation. CONCLUSIONS: Interventions that target peripheral ER stress might be beneficial therapeutic and prevention strategies against brain Aß pathology associated with metabolic overload and aging.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Antivirales/administración & dosificación , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácido Tauroquenodesoxicólico/administración & dosificación , Enfermedad de Alzheimer/prevención & control , Animales , Antivirales/farmacología , Encéfalo/metabolismo , Dieta , Modelos Animales de Enfermedad , Humanos , Infusiones Intraventriculares , Inyecciones Intraperitoneales , Ratones , Ratones Transgénicos , Ácido Tauroquenodesoxicólico/farmacología
5.
Rev Sci Instrum ; 92(8): 083512, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470416

RESUMEN

Laboratory experiments typically test opacity models by measuring spectrally resolved transmission of a sample using bright backlight radiation. A potential problem is that any unaccounted background signal contaminating the spectrum will artificially reduce the inferred opacity. Methods developed to measure background signals in opacity experiments at the Sandia Z facility are discussed. Preliminary measurements indicate that backgrounds are 9%-11% of the backlight signal at wavelengths less than 10 Å. Background is thus a relatively modest correction for all Z opacity data published to date. Future work will determine how important background is at longer wavelengths.

6.
Phys Rev Lett ; 124(5): 055003, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32083926

RESUMEN

Accurate calculation of spectral line broadening is important for many hot, dense plasma applications. However, calculated line widths have significantly underestimated measured widths for Δn=0 lines of Li-like ions, which is known as the isolated-line problem. In this Letter, scrutinization of the line-width derivation reveals that the commonly used expression neglects a potentially important contribution from electron-capture. Line-width calculations including this process are performed with two independent codes, both of which removed the discrepancies at temperatures below 10 eV. The revised calculations also suggest the remaining discrepancy scales more strongly with electron temperature than the atomic number as was previously suggested.

7.
Phys Rev Lett ; 122(23): 235001, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31298873

RESUMEN

The first systematic study of opacity dependence on atomic number at stellar interior temperatures is used to evaluate discrepancies between measured and modeled iron opacity [J. E. Bailey et al., Nature (London) 517, 56 (2015)NATUAS0028-083610.1038/nature14048]. High-temperature (>180 eV) chromium and nickel opacities are measured with ±6%-10% uncertainty, using the same methods employed in the previous iron experiments. The 10%-20% experiment reproducibility demonstrates experiment reliability. The overall model-data disagreements are smaller than for iron. However, the systematic study reveals shortcomings in models for density effects, excited states, and open L-shell configurations. The 30%-45% underestimate in the modeled quasicontinuum opacity at short wavelengths was observed only from iron and only at temperature above 180 eV. Thus, either opacity theories are missing physics that has nonmonotonic dependence on the number of bound electrons or there is an experimental flaw unique to the iron measurement at temperatures above 180 eV.

8.
Phys Rev Lett ; 122(1): 015002, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012651

RESUMEN

We report on the first accurate validation of low-Z ion-stopping formalisms in the regime ranging from low-velocity ion stopping-through the Bragg peak-to high-velocity ion stopping in well-characterized high-energy-density plasmas. These measurements were executed at electron temperatures and number densities in the range of 1.4-2.8 keV and 4×10^{23}-8×10^{23} cm^{-3}, respectively. For these conditions, it is experimentally demonstrated that the Brown-Preston-Singleton formalism provides a better description of the ion stopping than other formalisms around the Bragg peak, except for the ion stopping at v_{i}∼0.3v_{th}, where the Brown-Preston-Singleton formalism significantly underpredicts the observation. It is postulated that the inclusion of nuclear-elastic scattering, and possibly coupled modes of the plasma ions, in the modeling of the ion-ion interaction may explain the discrepancy of ∼20% at this velocity, which would have an impact on our understanding of the alpha energy deposition and heating of the fuel ions, and thus reduce the ignition threshold in an ignition experiment.

9.
Phys Rev Lett ; 119(7): 075001, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949679

RESUMEN

The interpretation of x-ray spectra emerging from x-ray binaries and active galactic nuclei accreted plasmas relies on complex physical models for radiation generation and transport in photoionized plasmas. These models have not been sufficiently experimentally validated. We have developed a highly reproducible benchmark experiment to study spectrum formation from a photoionized silicon plasma in a regime comparable to astrophysical plasmas. Ionization predictions are higher than inferred from measured absorption spectra. Self-emission measured at adjustable column densities tests radiation transport effects, demonstrating that the resonant Auger destruction assumption used to interpret black hole accretion spectra is inaccurate.

10.
Phys Rev E ; 95(6-1): 063206, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709238

RESUMEN

Iron opacity calculations presently disagree with measurements at an electron temperature of ∼180-195 eV and an electron density of (2-4)×10^{22}cm^{-3}, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations that were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. The results show that the errors considered here do not account for the previously observed model-data discrepancies.

11.
Phys Rev E ; 94(5-1): 051201, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27967028

RESUMEN

We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n_{e}/n_{crit}∼0.04 is irradiated by a multi-ns, multi-kJ, 0.35-µm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0×10^{14} to 2.5×10^{14}W/cm^{2} and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I=1.5×10^{14}W/cm^{2}) beams can efficiently couple energy (∼82% of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)10.1063/1.4890298].

12.
Phys Rev E ; 93(2): 023202, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986427

RESUMEN

Recently, frequency-resolved iron opacity measurements at electron temperatures of 170-200 eV and electron densities of (0.7-4.0)×10(22)cm(-3) revealed a 30-400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. These simulations bridge the static-uniform picture of the data interpretation and the dynamic-gradient reality of the experiments, and they will allow us to quantitatively assess the impact of effects neglected in the data interpretation.

13.
Rev Sci Instrum ; 86(11): 113505, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26628133

RESUMEN

Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ∼6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ∼10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.

14.
Nature ; 517(7532): 56-9, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25557711

RESUMEN

Nearly a century ago it was recognized that radiation absorption by stellar matter controls the internal temperature profiles within stars. Laboratory opacity measurements, however, have never been performed at stellar interior conditions, introducing uncertainties in stellar models. A particular problem arose when refined photosphere spectral analysis led to reductions of 30-50 per cent in the inferred amounts of carbon, nitrogen and oxygen in the Sun. Standard solar models using the revised element abundances disagree with helioseismic observations that determine the internal solar structure using acoustic oscillations. This could be resolved if the true mean opacity for the solar interior matter were roughly 15 per cent higher than predicted, because increased opacity compensates for the decreased element abundances. Iron accounts for a quarter of the total opacity at the solar radiation/convection zone boundary. Here we report measurements of wavelength-resolved iron opacity at electron temperatures of 1.9-2.3 million kelvin and electron densities of (0.7-4.0) × 10(22) per cubic centimetre, conditions very similar to those in the solar region that affects the discrepancy the most: the radiation/convection zone boundary. The measured wavelength-dependent opacity is 30-400 per cent higher than predicted. This represents roughly half the change in the mean opacity needed to resolve the solar discrepancy, even though iron is only one of many elements that contribute to opacity.

15.
Rev Sci Instrum ; 85(11): 11D603, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430179

RESUMEN

Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions [J. E. Bailey et al., Phys. Plasmas 16, 058101 (2009)]. The iron sample is placed on top of the Sandia National Laboratories z-pinch dynamic hohlraum (ZPDH) radiation source. The samples are heated to 150-200 eV electron temperatures and 7× 10(21)-4× 10(22) cm(-3) electron densities by the ZPDH radiation and backlit at its stagnation [T. Nagayama et al., Phys. Plasmas 21, 056502 (2014)]. The backlighter attenuated by the heated sample plasma is measured by four spectrometers along ±9° with respect to the z-pinch axis to infer the sample iron opacity. Here, we describe measurements of the source-to-sample distance that exploit the parallax of spectrometers that view the half-moon-shaped sample from ±9°. The measured sample temperature decreases with increased source-to-sample distance. This distance must be taken into account for understanding the sample heating.

16.
Rev Sci Instrum ; 83(10): 10E128, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126949

RESUMEN

Experiments have been performed at Sandia National Laboratories Z-facility to validate iron opacity models relevant to the solar convection/radiation zone boundary. Sample conditions were measured by mixing Mg with the Fe and using Mg K-shell line transmission spectra, assuming that the plasma was uniform. We develop a spectral model that accounts for hypothetical gradients, and compute synthetic spectra to quantitatively evaluate the plasma gradient size that can be diagnosed. Two sample designs are investigated, assuming linear temperature and density gradients. First, Mg uniformly mixed with Fe enables temperature gradients greater than 10% to be detected. The second design uses Mg mixed into one side and Al mixed into the other side of the sample in an attempt to more accurately infer the sample gradient. Both temperature and density gradients as small as a few percent can be detected with this design. Experiments have successfully recorded spectra with the second design. In future research, the spectral model will be used to place bounds on gradients that exist in Z opacity experiments.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 2): 066408, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21797499

RESUMEN

A spectroscopic method is discussed to measure core and compressed-shell conditions in thick-wall plastic-shell implosions filled with deuterium and a tracer amount of argon. Simultaneous observation over a broad photon energy range of the argon line emission and the attenuation and self-emission effects of the compressed shell confining the core yields enough information to extract average temperature and density conditions in both core and compressed shell. The spectroscopic analysis also provides an estimate of the target areal density which is an important characteristic of inertial confinement fusion implosions.

18.
Rev Sci Instrum ; 81(10): 10E307, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21034006

RESUMEN

We present results from the spectral postprocessing of a one-dimensional hydrodynamic simulation of an argon-doped, warm-shell shock-ignition implosion with a detailed atomic and radiation physics model. The argon tracer is added to the deuterium filling in the core for diagnostic purposes. Spectral features in the emergent intensity distribution in the photon energy range of the argon K-shell spectrum that have potential for diagnostic application are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...