Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 16: 905285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090792

RESUMEN

Changes to sensory experience result in plasticity of synapses in the cortex. This experience-dependent plasticity (EDP) is a fundamental property of the brain. Yet, while much is known about neuronal roles in EDP, very little is known about the role of astrocytes. To address this issue, we used the well-described mouse whiskers-to-barrel cortex system, which expresses a number of forms of EDP. We found that all-whisker deprivation induced characteristic experience-dependent Hebbian depression (EDHD) followed by homeostatic upregulation in L2/3 barrel cortex of wild type mice. However, these changes were not seen in mutant animals (IP3R2-/-) that lack the astrocyte-expressed IP3 receptor subtype. A separate paradigm, the single-whisker experience, induced potentiation of whisker-induced response in both wild-type (WT) mice and IP3R2-/- mice. Recordings in ex vivo barrel cortex slices reflected the in vivo results so that long-term depression (LTD) could not be elicited in slices from IP3R2-/- mice, but long-term potentiation (LTP) could. Interestingly, 1 Hz stimulation inducing LTD in WT paradoxically resulted in NMDAR-dependent LTP in slices from IP3R2-/- animals. The LTD to LTP switch was mimicked by acute buffering astrocytic [Ca2+] i in WT slices. Both WT LTD and IP3R2-/- 1 Hz LTP were mediated by non-ionotropic NMDAR signaling, but only WT LTD was P38 MAPK dependent, indicating an underlying mechanistic switch. These results demonstrate a critical role for astrocytic [Ca2+] i in several EDP mechanisms in neocortex.

2.
Bioact Mater ; 9: 358-372, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34820576

RESUMEN

To reflect human development, it is critical to create a substrate that can support long-term cell survival, differentiation, and maturation. Hydrogels are promising materials for 3D cultures. However, a bulk structure consisting of dense polymer networks often leads to suboptimal microenvironments that impedes nutrient exchange and cell-to-cell interaction. Herein, granular hydrogel-based scaffolds were used to support 3D human induced pluripotent stem cell (hiPSC)-derived neural networks. A custom designed 3D printed toolset was developed to extrude hyaluronic acid hydrogel through a porous nylon fabric to generate hydrogel granules. Cells and hydrogel granules were combined using a weaker secondary gelation step, forming self-supporting cell laden scaffolds. At three and seven days, granular scaffolds supported higher cell viability compared to bulk hydrogels, whereas granular scaffolds supported more neurite bearing cells and longer neurite extensions (65.52 ± 11.59 µm) after seven days compared to bulk hydrogels (22.90 ± 4.70 µm). Long-term (three-month) cultures of clinically relevant hiPSC-derived neural cells in granular hydrogels supported well established neuronal and astrocytic colonies and a high level of neurite extension both inside and beyond the scaffold. This approach is significant as it provides a simple, rapid and efficient way to achieve a tissue-relevant granular structure within hydrogel cultures.

3.
ACS Chem Neurosci ; 11(19): 3117-3129, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32833429

RESUMEN

Tau neurofibrillary tangles are key pathological features of Alzheimer's disease and other tauopathies. Recombinant protein technology is vital for studying the structure and function of tau in physiology and aggregation in pathophysiology. However, open-source and well-characterized plasmids for efficiently expressing and purifying different tau variants are lacking. We generated 44 sequence-verified plasmids including those encoding full length (FL) tau-441, its four-repeat microtubule-binding (K18) fragment, and their respective selected familial pathological variants (N279K, V337M, P301L, C291R, and S356T). Moreover, plasmids for expressing single (C291A), double (C291A/C322A), and triple (C291A/C322A/I260C) cysteine-modified variants were generated to study alterations in cysteine content and locations. Furthermore, protocols for producing representative tau forms were developed. We produced and characterized the aggregation behavior of the triple cysteine-modified tau-K18, often used in real-time cell internalization and aggregation studies because it can be fluorescently labeled on a cysteine outside the microtubule-binding core. Similar to the wild type (WT), triple cysteine-modified tau-K18 aggregated by progressive ß-sheet enrichment, albeit at a slower rate. On prolonged incubation, cysteine-modified K18 formed paired helical filaments similar to those in Alzheimer's disease, sharing morphological phenotypes with WT tau-K18 filaments. Nonetheless, cysteine-modified tau-K18 filaments were significantly shorter (p = 0.002) and mostly wider than WT filaments, explainable by their different principal filament elongation pathways: vertical (end-to-end) and lateral growth for WT and cysteine-modified, respectively. Cysteine rearrangement may therefore induce filament polymorphism. Together, the plasmid library, the protein production methods, and the new insights into cysteine-dependent aggregation should facilitate further studies and the design of antiaggregation agents.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/genética , Humanos , Ovillos Neurofibrilares , Plásmidos/genética , Tauopatías/genética , Proteínas tau/genética
4.
Front Cell Neurosci ; 13: 296, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338022

RESUMEN

The inter-cellular propagation of tau aggregates in several neurodegenerative diseases involves, in part, recurring cycles of extracellular tau uptake, initiation of endogenous tau aggregation, and extracellular release of at least part of this protein complex. However, human brain tau extracts from diverse tauopathies exhibit variant or "strain" specificity in inducing inter-cellular propagation in both cell and animal models. It is unclear if these distinctive properties are affected by disease-specific differences in aggregated tau conformation and structure. We have used a combined structural and cell biological approach to study if two frontotemporal dementia (FTD)-associated pathologic mutations, V337M and N279K, affect the aggregation, conformation and cellular internalization of the tau four-repeat domain (K18) fragment. In both heparin-induced and native-state aggregation experiments, each FTD variant formed soluble and fibrillar aggregates with remarkable morphological and immunological distinctions from the wild type (WT) aggregates. Exogenously applied oligomers of the FTD tau-K18 variants (V337M and N279K) were significantly more efficiently taken up by SH-SY5Y neuroblastoma cells than WT tau-K18, suggesting mutation-induced changes in cellular internalization. However, shared internalization mechanisms were observed: endocytosed oligomers were distributed in the cytoplasm and nucleus of SH-SY5Y cells and the neurites and soma of human induced pluripotent stem cell-derived neurons, where they co-localized with endogenous tau and the nuclear protein nucleolin. Altogether, evidence of conformational and aggregation differences between WT and disease-mutated tau K18 is demonstrated, which may explain their distinct cellular internalization potencies. These findings may account for critical aspects of the molecular pathogenesis of tauopathies involving WT and mutated tau.

5.
Biosens Bioelectron ; 135: 102-110, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31004920

RESUMEN

We present a plasmonic biosensor capable of detecting the presence of bisphenol A in ultra-low concentrations, yielding a wavelength shift of 0.15 ±â€¯0.01 nm in response to a solution of 1 fM concentration with limit of detection of 330 ±â€¯70 aM The biosensing device consists of an array of gold nano-antennae with a total length of 2.3 cm that generate coupled localised surface plasmons (cLSPs) and is covalently modified with an aptamer specific for bisphenol A recognition. The array of nano-antennae is fabricated on a lapped section of standard telecommunication optical fibre, allowing for potential multiplexing and its use in remote sensing applications. These results have been achieved without the use of enhancement techniques and therefore the approach allows the direct detection of bisphenol A, a low molecular weight (228 Da) target usually detectable only by indirect detection strategies. Its detection at such levels is a significant step forward in measuring small molecules at ultra-low concentrations. Furthermore, this new sensing platform paves the way for the development of portable systems for in-situ agricultural measurements capable of retrieving data on a substance of very high concern at ultra-low concentrations.


Asunto(s)
Aptámeros de Nucleótidos/química , Compuestos de Bencidrilo/análisis , Fenoles/análisis , Resonancia por Plasmón de Superficie/instrumentación , Contaminantes Químicos del Agua/análisis , Diseño de Equipo , Oro/química , Límite de Detección , Nanoestructuras/química , Nanoestructuras/ultraestructura , Fibras Ópticas
6.
Anal Biochem ; 566: 67-74, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30315761

RESUMEN

Increasing evidence suggests that small oligomers are the principal neurotoxic species of tau in Alzheimer's disease and other tauopathies. However, mechanisms of tau oligomer-mediated neurodegeneration are poorly understood. The transience of oligomers due to aggregation can compromise the stability of oligomers prepared in vitro. Consequently, we sought to develop an efficient method which maintains the stability and globular conformation of preformed oligomers. This study demonstrates that labeling a single-cysteine form of the pro-aggregant tau four-repeat region (K18) with either Alexa Fluor 488-C5-maleimide or N-ethylmaleimide in reducing conditions stabilizes oligomers by impeding their further aggregation. Furthermore, the use of this approach to study the propagation of labeled extracellular tau K18 oligomers into human neuroblastoma cells and human stem cell-derived neurons is described. This method is potentially applicable for preparing stabilized oligomers of tau for diagnostic and biomarker tests, as well as for in vitro structure-activity relationship assays.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas tau/química , Biomarcadores/química , Células Cultivadas , Humanos , Neuronas/metabolismo , Conformación Proteica
7.
J Tissue Eng Regen Med ; 13(3): 369-384, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30550638

RESUMEN

Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Técnicas de Cultivo de Célula/métodos , Channelrhodopsins/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Optogenética , Regiones Promotoras Genéticas/genética , Sinapsinas/genética , Alginatos/farmacología , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Reología , Sinapsinas/metabolismo
8.
Front Neurosci ; 12: 590, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233290

RESUMEN

The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the "core battery" of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.

9.
Cardiovasc Diabetol ; 16(1): 147, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29121940

RESUMEN

BACKGROUND: Irisin is a hormone released mainly from skeletal muscle after exercise which increases adipose tissue energy expenditure. Adipocytes can also release irisin after exercise, acting as a local adipokine to induce white adipose tissue to take on a brown adipose tissue-like phenotype, suggesting that irisin and its receptor may represent a novel molecular target for the treatment of obesity and obesity-related diabetes. Previous reports provide conflicting evidence regarding circulating irisin levels in patients with type 2 diabetes (T2DM). METHODS: This study investigated plasma irisin concentrations in 79 T2DM individuals, assessing potential associations with measures of segmental body composition, markers of endothelial dysfunction and peripheral blood mononuclear cell telomere length (TL). RESULTS: Resting, overnight-fasted plasma irisin levels were significantly higher in this group of T2DM patients compared with levels we previously reported in healthy volunteers (p < 0.001). Moreover, plasma irisin displayed a positive correlation with body mass index (p = 0.04), body fat percentage (p = 0.03), HbA1c (p = 0.03) and soluble E-selectin (p < 0.001). A significant negative association was observed between plasma irisin and visceral adiposity (p = 0.006) in T2DM patients. Multiple regression analysis revealed that circulating soluble E-selectin levels could be predicted by plasma irisin (p = 0.004). Additionally, cultured human umbilical vein endothelial cells (HUVEC) exposed to 200 ng/ml irisin for 4 h showed a significant fourfold increase in E-selectin and 2.5-fold increase in ICAM-1 gene expression (p = 0.001 and p = 0.015 respectively), and there was a 1.8-fold increase in soluble E-selectin in conditioned media (p < 0.05). CONCLUSION: These data suggest that elevated plasma irisin in T2DM is associated with indices of adiposity, and that irisin may be involved in pro-atherogenic endothelial disturbances that accompany obesity and T2DM. Accordingly, irisin may constitute a potentially novel therapeutic opportunity in the field of obesity and cardiovascular diabetology.


Asunto(s)
Adiposidad/fisiología , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/sangre , Selectina E/sangre , Fibronectinas/sangre , Adulto , Anciano , Biomarcadores/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Persona de Mediana Edad
10.
Protein Expr Purif ; 130: 44-54, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27663563

RESUMEN

Recombinant tau protein is widely used to study the biochemical, cellular and pathological aspects of tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTPD-17). Pure tau in high yield is a requirement for in vitro evaluation of the protein's physiological and toxic functions. However, the preparation of recombinant tau is complicated by the protein's propensity to aggregate and form truncation products, necessitating the use of multiple, time-consuming purification methods. In this study, we investigated parameters that influence the expression of wild type and FTPD-17 pathogenic tau, in an attempt to identify ways to maximise expression yield. Here, we report on the influence of the choice of host strain, induction temperature, duration of induction, and media supplementation with glucose on tau expression in Escherichia coli. We also describe a straightforward process to purify the expressed tau proteins using immobilised metal affinity chromatography, with favourable yields over previous reports. An advantage of the described method is that it enables high yield production of functional oligomeric and monomeric tau, both of which can be used to study the biochemical, physiological and toxic properties of the protein.


Asunto(s)
Escherichia coli/metabolismo , Demencia Frontotemporal , Histidina , Proteínas Recombinantes de Fusión , Proteínas tau , Cromatografía de Afinidad/métodos , Escherichia coli/genética , Histidina/química , Histidina/genética , Histidina/aislamiento & purificación , Humanos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas tau/biosíntesis , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/aislamiento & purificación
11.
J Cereb Blood Flow Metab ; 35(8): 1348-57, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25853906

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, affecting more than 35 million people worldwide. Brain hypometabolism is a major feature of AD, appearing decades before cognitive decline and pathologic lesions. To date, the majority of studies on hypometabolism in AD have used transgenic animal models or imaging studies of the human brain. As it is almost impossible to validate these findings using human tissue, alternative models are required. In this study, we show that human stem cell-derived neuron and astrocyte cultures treated with oligomers of amyloid beta 1-42 (Aß1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose, pyruvate, lactate, and glutamate. In addition, a significant increase in the glycogen content of cells was also observed. These changes were accompanied by changes in NAD(+)/NADH, ATP, and glutathione levels, suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aß-induced hypometabolism. Further research using this model may elucidate the mechanisms associated with Aß-induced hypometabolism.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Modelos Biológicos , Red Nerviosa/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Células Madre/metabolismo , Enfermedad de Alzheimer/patología , Astrocitos/patología , Línea Celular Tumoral , Metabolismo Energético , Humanos , Red Nerviosa/patología , Neuronas/patología , Estrés Oxidativo , Células Madre/patología
12.
Environ Toxicol Pharmacol ; 38(3): 968-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25461557

RESUMEN

Mixtures of pesticides in foodstuffs and the environment are ubiquitous in the developed world and although agents are usually exhaustively tested individually, the toxicological implications of pesticide mixtures are underreported. In this study, the effects of two fungicides, fenhexamid and myclobutanil were investigated individually and in combination on two human cell lines, SH-SY5Y neuronal cells and U-251 MG glial cells. After 48h of incubation with increasing concentrations of pesticides ranging from 1 to 1000µM, gene expression profiles were studied in addition to toxicity end points, including cell viability, mitochondrial depolarisation as well as cellular glutathione maintenance. There were no significant differences between the susceptibility of the two cell lines in terms of cell viability assessment or mitochondrial membrane potential, when agents were administered either individually or in combination. By contrast, in the presence of the fungicides, the SH-SY5Y cells showed significantly greater susceptibility to oxidative stress in terms of total thiol depletion in comparison with the astrocytic cells. Treatment with the two pesticides led to significant changes in the cell lines' expression of several genes which regulate cell cycle control and growth (RB1, TIMP1) as well as responses to DNA attrition (ATM and CDA25A) and control of apoptosis (FAS). There was no evidence in this study that the combination of fenhexamid and myclobutanil was significantly more toxic than individual exposure, although gene expression changes suggested there may be differences in the sub-lethal response of both cell lines to both individual and combined exposure.


Asunto(s)
Amidas/toxicidad , Fungicidas Industriales/toxicidad , Neuroglía/metabolismo , Neuronas/metabolismo , Nitrilos/toxicidad , Triazoles/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pruebas de Toxicidad
13.
Age (Dordr) ; 36(2): 995-1001, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24469890

RESUMEN

The ageing process is strongly influenced by nutrient balance, such that modest calorie restriction (CR) extends lifespan in mammals. Irisin, a newly described hormone released from skeletal muscles after exercise, may induce CR-like effects by increasing adipose tissue energy expenditure. Using telomere length as a marker of ageing, this study investigates associations between body composition, plasma irisin levels and peripheral blood mononuclear cell telomere length in healthy, non-obese individuals. Segmental body composition (by bioimpedance), telomere length and plasma irisin levels were assessed in 81 healthy individuals (age 43 ± 15.8 years, BMI 24.3 ± 2.9 kg/m(2)). Data showed significant correlations between log-transformed relative telomere length and the following: age (p < 0.001), height (p = 0.045), total body fat percentage (p = 0.031), abdominal fat percentage (p = 0.038), visceral fat level (p < 0.001), plasma leptin (p = 0.029) and plasma irisin (p = 0.011), respectively. Multiple regression analysis using backward elimination revealed that relative telomere length can be predicted by age (b = -0.00735, p = 0.001) and plasma irisin levels (b = 0.04527, p = 0.021). These data support the view that irisin may have a role in the modulation of both energy balance and the ageing process.


Asunto(s)
Envejecimiento/genética , ADN/genética , Metabolismo Energético/genética , Fibronectinas/sangre , Homeostasis del Telómero/fisiología , Telómero/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Fibronectinas/genética , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
14.
J Cereb Blood Flow Metab ; 33(9): 1386-93, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23715062

RESUMEN

The NT2.D1 cell line is one of the most well-documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of the neuronal cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time that human stem cell-derived astrocytes produce glycogen and that co-cultures of these cells demonstrate a functional astrocyte-neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake, which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2-derived neurons and astrocytes, we have shown that these cells modulate their glucose uptake in response to glutamate. Additionally, we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown after treatment with glutamate, potassium, isoproterenol, and dbcAMP. Together, these results demonstrate for the first time a functional ANLS in a human stem cell-derived co-culture.


Asunto(s)
Astrocitos/metabolismo , Comunicación Celular/fisiología , Ácido Glutámico/metabolismo , Ácido Láctico/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Astrocitos/citología , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Red Nerviosa/citología , Neuronas/citología
15.
PLoS One ; 8(3): e58822, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527032

RESUMEN

Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Cloruro de Litio/farmacología , Neurogénesis/efectos de los fármacos , Fenotipo , Ácido Valproico/farmacología , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Anotación de Secuencia Molecular , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reproducibilidad de los Resultados , Antígenos Embrionarios Específico de Estadio/genética , Antígenos Embrionarios Específico de Estadio/metabolismo
16.
PLoS One ; 7(5): e36098, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22567128

RESUMEN

A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal/fisiología , Calcio/metabolismo , Línea Celular Tumoral , Electrofisiología , Humanos , Inmunohistoquímica
17.
Biotechniques ; 35(5): 980-2, 984, 986, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14628672

RESUMEN

A simple protein-DNA interaction analysis has been developed using a high-affinity/high-specificity zinc finger protein. In essence, purified protein samples are immobilized directly onto the surface of microplate wells, and fluorescently labeled DNA is added in solution. After incubation and washing, bound DNA is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.2 nM DNA. Since the detection of bound DNA is noninvasive and the protein-DNA interaction is not disrupted during detection, iterative readings may be taken from the same well, after successive alterations in interaction conditions, if required. In this respect, the assay may therefore be considered real time and permits appropriate interaction conditions to be determined quantitatively. The assay format is ideally suited to investigate the interactions of purified unlabeled DNA binding proteins in a high-throughput format.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/química , ADN/análisis , ADN/química , Mapeo de Interacción de Proteínas/métodos , Espectrometría de Fluorescencia/métodos , Adsorción , Sitios de Unión , Técnicas Biosensibles/instrumentación , Análisis de Falla de Equipo , Unión Proteica , Mapeo de Interacción de Proteínas/instrumentación , Espectrometría de Fluorescencia/instrumentación , Dedos de Zinc
18.
J Mol Biol ; 331(5): 973-9, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12927534

RESUMEN

Amino acid substitution plays a vital role in both the molecular engineering of proteins and analysis of structure-activity relationships. High-throughput substitution is achieved by codon randomisation, which generates a library of mutants (a randomised gene library) in a single experiment. For full randomisation, key codons are typically replaced with NNN (64 sequences) or NN(G)(CorT) (32 sequences). This obligates cloning of redundant codons alongside those required to encode the 20 amino acids. As the number of randomised codons increases, there is therefore a progressive loss of randomisation efficiency; the number of genes required per protein rises exponentially. The redundant codons cause amino acids to be represented unevenly; for example, methionine is encoded just once within NNN, whilst arginine is encoded six times. Finally, the organisation of the genetic code makes it impossible to encode functional subsets of amino acids (e.g. polar residues only) in a single experiment. Here, we present a novel solution to randomisation where genetic redundancy is eliminated; the number of different genes equals the number of encoded proteins, regardless of codon number. There is no inherent amino acid bias and any required subset of amino acids may be encoded in one experiment. This generic approach should be widely applicable in studies involving randomisation of proteins.


Asunto(s)
Biblioteca de Genes , Sustitución de Aminoácidos , Secuencia de Bases , Codón/genética , Oligodesoxirribonucleótidos/genética , Ingeniería de Proteínas , Proteínas/química , Proteínas/genética , Distribución Aleatoria
19.
Biotechnol Bioeng ; 79(4): 450-6, 2002 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-12115408

RESUMEN

The sequence-specific affinity chromatographic isolation of plasmid DNA from crude lysates of E. coli DH5alpha fermentations is addressed. A zinc finger-GST fusion protein that binds a synthetic oligonucleotide cassette containing the appropriate DNA recognition sequence is described. This cassette was inserted into the SmaI site of pUC19 to enable the affinity isolation of the plasmid. It is shown that zinc finger-GST fusion proteins can bind both their DNA recognition sequence and a glutathione-derivatized solid support simultaneously. Furthermore, a simple procedure for the isolation of such plasmids from clarified cell lysates is demonstrated. Cell lysates were clarified by cross-flow Dean vortex microfiltration, and the permeate was incubated with zinc finger-GST fusion protein. The resulting complex was adsorbed directly onto glutathione-Sepharose. Analysis of the glutathione-eluted complex showed that plasmid DNA had been recovered, largely free from contamination by genomic DNA or bacterial cell proteins.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas de Unión al ADN/metabolismo , Glutatión Transferasa/biosíntesis , Glutatión Transferasa/metabolismo , Plásmidos/aislamiento & purificación , Ultrafiltración/métodos , Dedos de Zinc , Proteínas de Unión al ADN/biosíntesis , Modelos Genéticos , Proyectos Piloto , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...