Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(12): e9652, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36568873

RESUMEN

Plant litter decomposition is a key ecosystem process in carbon and nutrient cycling, and is heavily affected by changing climate. While the direct effects of drought on decomposition are widely studied, in order to better predict the overall drought effect, indirect effects associated with various drought-induced changes in ecosystems should also be quantified. We studied the effect of an extreme (5-month) experimental drought on decomposition, and if this effect varies with two dominant perennial grasses, plant parts (leaves vs. roots), and soil depths (0-5 cm vs. 10-15 cm) in a semi-arid temperate grassland. After 12 months, the average litter mass loss was 43.5% in the control plots, while only 25.7% in the drought plots. Overall, mass loss was greater for leaves (44.3%) compared to roots (24.9%), and for Festuca vaginata (38.6%) compared to Stipa borysthenica (30.5%). This variation was consistent with the observed differences in nitrogen and lignin content between plant parts and species. Mass loss was greater for deep soil (42.8%) than for shallow soil (26.4%). Collectively, these differences in decomposition between the two species, plant parts, and soil depths were similar in magnitude to direct drought effect. Drought induces multiple changes in ecosystems, and our results highlight that these changes may in turn modify decomposition. We conclude that for a reliable estimate of decomposition rates in an altered climate, not only direct but also indirect climatic effects should be considered, such as those arising from changing species dominance, root-to-shoot ratio, and rooting depth.

2.
Microorganisms ; 9(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34683451

RESUMEN

The last few years have witnessed the emergence of alternative measures to control plant parasitic nematodes (PPNs). We briefly reviewed the potential of compost and the direct or indirect roles of soil-dwelling organisms against PPNs. We compiled and assessed the most intensively researched factors of suppressivity. Municipal green waste (MGW) was identified and profiled. We found that compost, with or without beneficial microorganisms as biocontrol agents (BCAs) against PPNs, were shown to have mechanisms for the control of plant parasitic nematodes. Compost supports a diverse microbiome, introduces and enhances populations of antagonistic microorganisms, releases nematicidal compounds, increases the tolerance and resistance of plants, and encourages the establishment of a "soil environment" that is unsuitable for PPNs. Our compilation of recent papers reveals that while the scope of research on compost and BCAs is extensive, the role of MGW-based compost (MGWC) in the control of PPNs has been given less attention. We conclude that the most environmentally friendly and long-term, sustainable form of PPN control is to encourage and enhance the soil microbiome. MGW is a valuable resource material produced in significant amounts worldwide. More studies are suggested on the use of MGWC, because it has a considerable potential to create and maintain soil suppressivity against PPNs. To expand knowledge, future research directions shall include trials investigating MGWC, inoculated with BCAs.

3.
Environ Sci Pollut Res Int ; 28(26): 34436-34449, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33651295

RESUMEN

To better understand the nanosize-relevant toxic effects and underlying mechanisms, N-acetylcysteine (NAC), as a mitigation agent, an ionic form of Zn (ZnCl2), and the binary mixture of ZnO with different particle sizes (15 nm and 140 nm), was used in toxicity assays with the nematode Panagrellus redivivus. The ZnCl2 concentrations were applied to show the amount of dissolved Zn ions present in the test system. Reactive oxygen species (ROS) measuring method was developed to fit the used test system. Our studies have shown that NAC can mitigate the toxic effects of both studied particle sizes. In the applied concentrations, ZnCl2 was less toxic than both of the ZnO particles. This finding indicates that not only ions and ROS produced by the dissolution are behind the toxic effects of the ZnO NPs, but also other particle size-dependent toxic effects, like the spontaneous ROS generation, are also relevant. When the two materials were applied in binary mixtures, the toxic effects increased significantly, and the dissolved zinc content and the ROS generation also increased. It is assumed that the chemical and physical properties of the materials have been mutually reinforcing to form a more reactive mixture that is more toxic to the P. redivivus test organism. Our findings demonstrate the importance of using mitigation agent and mixtures to evaluate the size-dependent toxicity of the ZnO.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Acetilcisteína , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Especies Reactivas de Oxígeno , Zinc , Óxido de Zinc/toxicidad
4.
Environ Sci Pollut Res Int ; 23(10): 9669-78, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26846243

RESUMEN

Nanoparticulate ZnO is one of the most commonly applied nanomaterials. As ZnO is more soluble than many other oxide nanoparticles, its toxicity beyond the nanoparticle-specific effects can be attributed to the dissolved ionic zinc. The investigation of uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi, which was used in previous studies as a biological model organism, was aimed. The establishment of the role of dissolved zinc and nanoparticle-specific effects in the toxicity was also the objective of our study. Zn uptake was found to be significantly higher for bulk and nano-ZnO than for ZnSO4 solution; however, treatments caused loss of potassium in the worms in a dissolved-zinc-dependent manner. The toxicity was the lowest for bulk ZnO, and it was very similar for nano-ZnO and ZnSO4 solution. Accordingly, the toxicity of ZnO nanoparticles is a combination of dissolved-zinc-caused toxicity and nanoparticle-specific effects.


Asunto(s)
Nanopartículas del Metal , Nematodos/química , Nematodos/metabolismo , Zinc , Animales , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Zinc/química , Zinc/farmacocinética , Zinc/toxicidad , Sulfato de Zinc/química , Sulfato de Zinc/farmacocinética , Sulfato de Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...