Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 774: 145421, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33444684

RESUMEN

Epstein-Barr virus nuclear antigens 2 (EBNA2) mediated super-enhancers, defined by in silico data, localize near genes associated with B cell transcription factors including RUNX3. However, the biological function of super-enhancer for RUNX3 gene (seR3) remains unclear. Here, we show that two seR3s, tandemly-located at 59- and 70-kb upstream of RUNX3 transcription start site, named seR3 -59h and seR3 -70h, are required for RUNX3 expression and cell proliferation in Epstein-Barr virus (EBV)-positive malignant B cells. A BET bromodomain inhibitor, JQ1, potently suppressed EBV-positive B cell growth through the reduction of RUNX3 and MYC expression. Excision of either or both seR3s by employing CRISPR/Cas9 system resulted in the decrease in RUNX3 expression and the subsequent suppression of cell proliferation and colony forming capability. The expression of MYC was also reduced when seR3s were deleted, probably due to the loss of trans effect of seR3s on the super-enhancers for MYC. These findings suggest that seR3s play a pivotal role in expression and biological function of both RUNX3 and MYC. seR3s would serve as a potential therapeutic target in EBV-related widespread tumors.


Asunto(s)
Linfocitos B/virología , Proliferación Celular/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Elementos de Facilitación Genéticos , Herpesvirus Humano 4/fisiología , Azepinas/farmacología , Linfocitos B/citología , Linfoma de Burkitt/genética , Linfoma de Burkitt/virología , Sistemas CRISPR-Cas , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fase G1/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes myc , Humanos , Dominios Proteicos , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Triazoles/farmacología
2.
Histol Histopathol ; 30(6): 661-72, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25574754

RESUMEN

There has been considerable interest in identifying a cis-regulatory element that targets gene expression to stem cells. Such an element, termed stem cell enhancer, holds the promise of providing important insights into the transcriptional programs responsible for inherent stem cell-specific properties such as self-renewal capacity. The element also serves as a molecular handle for stem cell-specific marking, transgenesis and gene targeting, thereby becoming invaluable to stem cell research. A series of candidate enhancers have been identified for hematopoietic stem cells (HSCs). This review summarizes currently known HSC enhancers with emphasis on an intronic enhancer in the Runx1 gene which is essential for the generation and maintenance of HSCs. The element, named eR1 (+24m), is active specifically in HSCs, but not in progenitors, and is hence the most definitive HSC enhancer.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Hematopoyéticas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Humanos , Elementos Reguladores de la Transcripción
3.
PLoS One ; 9(11): e113445, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25405766

RESUMEN

The cyclostomes (jawless vertebrates), comprising lampreys and hagfishes, are the sister group of jawed vertebrates (gnathostomes) and are hence an important group for the study of vertebrate evolution. In mammals, three Runx genes, Runx1, Runx2 and Runx3, encode transcription factors that are essential for cell proliferation and differentiation in major developmental pathways such as haematopoiesis, skeletogenesis and neurogenesis and are frequently associated with diseases. We describe here the characterization of Runx gene family members from a cyclostome, the Japanese lamprey (Lethenteron japonicum). The Japanese lamprey contains three Runx genes, RunxA, RunxB, and RunxC. However, phylogenetic and synteny analyses suggest that they are not one-to-one orthologs of gnathostome Runx1, Runx2 and Runx3. The major protein domains and motifs found in gnathostome Runx proteins are highly conserved in the lamprey Runx proteins. Although all gnathostome Runx genes each contain two alternative promoters, P1 (distal) and P2 (proximal), only lamprey RunxB possesses the alternative promoters; lamprey RunxA and RunxC contain only P2 and P1 promoter, respectively. Furthermore, the three lamprey Runx genes give rise to fewer alternative isoforms than the three gnathostome Runx genes. The promoters of the lamprey Runx genes lack the tandem Runx-binding motifs that are highly conserved among the P1 promoters of gnathostome Runx1, Runx2 and Runx3 genes; instead these promoters contain dispersed single Runx-binding motifs. The 3'UTR of lamprey RunxB contains binding sites for miR-27 and miR-130b/301ab, which are conserved in mammalian Runx1 and Runx3, respectively. Overall, the Runx genes in lamprey seem to have experienced a different evolutionary trajectory from that of gnathostome Runx genes which are highly conserved all the way from cartilaginous fishes to mammals.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Proteínas de Peces/genética , Familia de Multigenes , Petromyzon/genética , Regiones no Traducidas 3'/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Subunidades alfa del Factor de Unión al Sitio Principal/clasificación , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Evolución Molecular , Exones/genética , Femenino , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Intrones/genética , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Petromyzon/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
4.
Cell Rep ; 8(3): 767-82, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25066130

RESUMEN

The RUNX genes encode transcription factors involved in development and human disease. RUNX1 and RUNX3 are frequently associated with leukemias, yet the basis for their involvement in leukemogenesis is not fully understood. Here, we show that Runx1;Runx3 double-knockout (DKO) mice exhibited lethal phenotypes due to bone marrow failure and myeloproliferative disorder. These contradictory clinical manifestations are reminiscent of human inherited bone marrow failure syndromes such as Fanconi anemia (FA), caused by defective DNA repair. Indeed, Runx1;Runx3 DKO cells showed mitomycin C hypersensitivity, due to impairment of monoubiquitinated-FANCD2 recruitment to DNA damage foci, although FANCD2 monoubiquitination in the FA pathway was unaffected. RUNX1 and RUNX3 interact with FANCD2 independently of CBFß, suggesting a nontranscriptional role for RUNX in DNA repair. These findings suggest that RUNX dysfunction causes DNA repair defect, besides transcriptional misregulation, and promotes the development of leukemias and other cancers.


Asunto(s)
Médula Ósea/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Reparación del ADN , Anemia de Fanconi/genética , Leucemia/genética , Animales , Médula Ósea/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Eliminación de Gen , Predisposición Genética a la Enfermedad , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Leucemia/metabolismo , Ratones , Ratones Endogámicos C57BL
5.
PLoS One ; 9(4): e93816, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24699678

RESUMEN

The Runx family genes encode transcription factors that play key roles in hematopoiesis, skeletogenesis and neurogenesis and are often implicated in diseases. We describe here the cloning and characterization of Runx1, Runx2, Runx3 and Runxb genes in the elephant shark (Callorhinchus milii), a member of Chondrichthyes, the oldest living group of jawed vertebrates. Through the use of alternative promoters and/or alternative splicing, each of the elephant shark Runx genes expresses multiple isoforms similar to their orthologs in human and other bony vertebrates. The expression profiles of elephant shark Runx genes are similar to those of mammalian Runx genes. The syntenic blocks of genes at the elephant shark Runx gene loci are highly conserved in human, but represented by shorter conserved blocks in zebrafish indicating a higher degree of rearrangements in this teleost fish. Analysis of promoter regions revealed conservation of binding sites for transcription factors, including two tandem binding sites for Runx that are totally conserved in the distal promoter regions of elephant shark Runx1-3. Several conserved noncoding elements (CNEs), which are putative cis-regulatory elements, and miRNA binding sites were identified in the elephant shark and human Runx gene loci. Some of these CNEs and miRNA binding sites are absent in teleost fishes such as zebrafish and fugu. In summary, our analysis reveals that the genomic organization and expression profiles of Runx genes were already complex in the common ancestor of jawed vertebrates.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Tiburones/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Evolución Molecular , Genoma , Humanos , Regiones Promotoras Genéticas
6.
Blood Cells Mol Dis ; 44(4): 275-86, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20144877

RESUMEN

In multicellular organisms, terminally differentiated cells of most tissues are short-lived and therefore require constant replenishment from rapidly dividing stem cells for homeostasis and tissue repair. For the stem cells to last throughout the lifetime of the organism, however, a small subset of stem cells, which are maintained in a hibernation-like state known as stem cell quiescence, is required. Such dormant stem cells reside in the niche and are activated into proliferation only when necessary. A multitude of factors are required for the maintenance of stem cell quiescence and niche. In particular, the Runx family genes have been implicated in stem cell quiescence in various organisms and tissues. In this review, we discuss the maintenance of stem cell quiescence in various tissues, mainly in the context of the Runx family genes, and with special focus on the hematopoietic system.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/fisiología , Regulación del Desarrollo de la Expresión Génica , Familia de Multigenes , Células Madre/citología , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Fase G1/genética , Genes de Helminto , Hematopoyesis/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Humanos , Intestino Delgado/citología , Hígado/citología , Ratones , Especificidad de Órganos , Fase de Descanso del Ciclo Celular/genética , Piel/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...