Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
ACS Nano ; 13(4): 4091-4100, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30865427

RESUMEN

Three-dimensional (3D) semimetals have been predicted and demonstrated to have a wide variety of interesting properties associated with their linear energy dispersion. In analogy to two-dimensional (2D) Dirac semimetals, such as graphene, Cd3As2 has shown ultrahigh mobility and large Fermi velocity and has been hypothesized to support plasmons at terahertz frequencies. In this work, we experimentally demonstrate synthesis of high-quality large-area Cd3As2 thin films through thermal evaporation as well as the experimental realization of plasmonic structures consisting of periodic arrays of Cd3As2 stripes. These arrays exhibit sharp resonances at terahertz frequencies with associated quality factors ( Q) as high as ∼3.7 (at 0.82 THz). Such spectrally narrow resonances can be understood on the basis of a long momentum scattering time, which in our films can approach ∼1 ps at room temperature. Moreover, we demonstrate an ultrafast tunable response through excitation of photoinduced carriers in optical pump/terahertz probe experiments. Our results evidence that the intrinsic 3D nature of Cd3As2 might provide for a very robust platform for terahertz plasmonic applications. Moreover, the long momentum scattering time as well as large kinetic inductance in Cd3As2 also holds enormous potential for the redesign of passive elements such as inductors and hence can have a profound impact in the field of RF integrated circuits.

3.
Sci Adv ; 4(5): eaar7353, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29736416

RESUMEN

The ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity. By doing so, we demonstrate tuning of the terahertz resonant response that is based not only on the optical pump fluence but also on the optical wavelength. Because polycrystalline perovskites have subnanosecond photocarrier recombination lifetimes, switching between resonances can occur on an ultrafast time scale. The use of multiple perovskites allows for new functionalities that are not possible using a single semiconducting material. For example, by patterning one perovskite in the gaps of split-ring resonators and bringing a uniform thin film of a second perovskite in close proximity, we demonstrate tuning of the resonant response using one optical wavelength and suppression of the resonance using a different optical wavelength. This general approach offers new capabilities for creating tunable terahertz devices.

4.
Sci Rep ; 8(1): 3577, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476173

RESUMEN

We report on terahertz characterization of La-doped BaSnO3 (BSO) thin-films. BSO is a transparent complex oxide material, which has attracted substantial interest due to its large electrical conductivity and wide bandgap. The complex refractive index of these films is extracted in the 0.3 to 1.5 THz frequency range, which shows a metal-like response across this broad frequency window. The large optical conductivity found in these films at terahertz wavelengths makes this material an interesting platform for developing electromagnetic structures having a strong response at terahertz wavelengths, i.e. terahertz-functional, while being transparent at visible and near-IR wavelengths. As an example of such application, we demonstrate a visible-transparent terahertz polarizer.

5.
Nat Commun ; 8(1): 1328, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29105661

RESUMEN

Controlling and modulating terahertz signals is of fundamental importance to allow systems level applications. We demonstrate an innovative approach for controlling the propagation properties of terahertz (THz) radiation, through use of both the excitation optical wavelength (colour) and intensity. We accomplish this using two-dimensional (2D) layered hybrid trihalide perovskites that are deposited onto silicon substrates. The absorption properties of these materials in the visible range can be tuned by changing the number of inorganic atomic layers in between the organic cation layers. Optical absorption in 2D perovskites occurs over a broad spectral range above the bandgap, resulting in free carrier generation, as well as over a narrow spectral range near the bandedge due to exciton formation. We find that only the latter contribution gives rise to photo-induced THz absorption. By patterning multiple 2D perovskites with different optical absorption properties onto a single device, we demonstrate both colour selective modulation and focusing of THz radiation. These findings open new directions for creating active THz devices.

6.
Sci Rep ; 7(1): 12019, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931911

RESUMEN

We characterize the terahertz (THz) magneto-plasmonic response of a cobalt-based periodic aperture array. The bare cobalt surface allows for low loss propagation of surface plasmon-polaritons, as evidenced by comparing the reflection from aperture arrays coated with Au and with Co. When an external magnetic field is applied in a polar Kerr geometry, we observe a maximum polarization rotation of ~0.6° and an ellipticity of ~0.35° from the Co-based array. These values are larger than expected based on existing models that include only interband transitions in ferromagnetic metals. We discuss possible reasons for the difference between experiment and theory.

7.
Light Sci Appl ; 6(3): e16232, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30167236

RESUMEN

We present the first experimental observation of Anderson localization in the terahertz frequency range using plasmonic structures. To accomplish this goal, we designed THz waveguides consisting of a one-dimensional array of rectangular apertures that were fabricated in a freestanding metal foil. Disorder is introduced into the waveguide by offsetting the position of each aperture by a random distance within a prescribed range. For example, for a waveguide with apertures spaced by 250 µm in a periodic waveguide, 10% disorder would correspond to the apertures being shifted by a random value between ±25 µm along the waveguide axis. We find that for disorder levels below 25%, there is only an increase in the propagation loss along the device. However, for two specific waveguides with 25% disorder, we observe a spatially localized mode that lies just within the stop band of the device and exhibits a double-sided exponential spatial decay away from the maximum.

8.
Opt Express ; 24(3): 2728-36, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906843

RESUMEN

We demonstrate near-field imaging capabilities of a conical waveguide without cutoff using broadband terahertz (THz) radiation. In contrast to conventional conically tapered waveguides, which are characterized by strong suppression of transmission below the cutoff frequency, the proposed structure consists of two pieces, such that there is an adjustable gap along the length of the waveguide. We also ensure that the sidewalls are thin in the vicinity of the gap. The combination of these geometrical features allow for significantly enhanced transmission at frequencies below the cutoff frequency, without compromising the mode confinement and, consequently, the spatial resolution when used for imaging applications. We demonstrate near-field imaging with this probe simultaneously at several frequencies, corresponding to three regimes: above, near and below the cutoff frequency. We observe only mild degradation in the image quality as the frequency is reduced below the cutoff frequency. These results suggest that further refinements in the probe structure will allow for improved imaging capabilities at frequencies well below the cutoff frequency.

9.
Sci Rep ; 5: 8637, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25727894

RESUMEN

Structured metallic patterns are routinely used for a wide variety of applications, ranging from electronic circuits to plasmonics and metamaterials. Numerous techniques have been developed for the fabrication of these devices, in which the metal patterns are typically formed using conventional metals. While this approach has proven very successful, it does generally limit the ability to reconfigure the geometry of the overall device. Here, we demonstrate the ability to create artificially structured metallic devices using liquid metals, in which the configuration can be altered via the electrolysis of saline solutions or deionized water. We accomplish this using an elastomeric mold with two different sets of embedded microfluidic channels that are patterned and injected with EGaIn and water, respectively. The electrochemical reaction is then used to etch the thin oxide layer that forms on eutectic gallium indium (EGaIn) in a controlled reproducible manner. Once the oxide layer is dissolved locally, the underlying liquid metal retracts away from the original position to a position where a new stable oxide layer can reform, which is equivalent to erasing a section of the liquid metal. To allow for full reconfigurability, the entire device can be reset by refilling all of the microchannels with EGaIn.

10.
Opt Express ; 22(3): 2868-80, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663579

RESUMEN

We describe the fabrication and characterization of plasmonic waveguides based on a periodic one-dimensional array of symmetric and asymmetric T-shaped structures. The devices are fabricated in a polymer resin using conventional 3D printing and subsequently overcoated with ~500 nm of Au. Using terahertz (THz) time-domain spectroscopy, we systematically measure the guided-wave transmission properties of the devices as a function of the different geometrical parameters. Through these measurements, we find that the resonance frequency associated with the lowest order mode depends primarily on the structure height and the cap width and appears to be independent of its lateral width. We also perform numerical simulations using the same geometrical parameters and find excellent agreement between experiment and simulation. We fabricate a waveguide in which the lateral width of the T-shaped structures is tapered in a linear fashion. While the spectrum of this device is similar to one without tapering, we observe relatively little reduction in the mode size, even as the structure width is reduced by a factor of eight.

11.
Opt Express ; 22(4): 4065-74, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24663728

RESUMEN

We demonstrate a liquid metal-based reconfigurable terahertz (THz) metamaterial device that is not only pressure driven, but also exhibits pressure memory. The discrete THz response is obtained by injecting eutectic gallium indium (EGaIn) into a microfluidic structure that is fabricated in polydimethylsiloxane (PDMS) using conventional soft lithography techniques. The shape of the injected EGaIn is mechanically stabilized by the formation of a thin oxide surface layer that allows the fluid to maintain its configuration within the microchannels despite its high intrinsic surface energy. Although the viscosity of EGaIn is twice that of water, the formation of the surface oxide layer prevents flow into a microchannel unless a critical pressure is exceeded. Using a structure in which the lateral channel dimensions vary, we progressively increase the applied pressure beyond the relevant critical pressure for each section of the device, enabling switching from one geometry to another (split ring resonator to closed ring resonator to an irregular closed ring resonator). As the geometry changes, the transmission spectrum of the device changes dramatically. When the external applied pressure is removed between device geometry changes, the liquid metal morphology remains unchanged, which can be regarded as a form of pressure memory. Once the device is fully filled with liquid metal, it can be erased through the use of mechanical pressure and exposure to acid vapors.

12.
Opt Express ; 21(21): 24422-30, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24150287

RESUMEN

We demonstrate that 3D printing, commonly associated with the manufacture of large objects, allows for the fabrication of high quality terahertz (THz) plasmonic structures. Using a commercial 3D printer, we print a variety of structures that include abrupt out-of-plane bends and continuously varying bends. The waveguides are initially printed in a polymer resin and then sputter deposited with ~500 nm of Au. This thickness of Au is sufficient to support low loss propagation of surface plasmon-polaritons with minimal impact from the underlying layer, thereby demonstrating a useful approach for fabricating a broad range of plasmonic structures that incorporate complex geometries. Using THz time-domain spectroscopy, we measure the guided-wave properties of these devices. We find that the propagation properties of the guided-wave modes are similar to those obtained in similar conventional metal-based waveguides, albeit with slightly higher loss. This additional loss is attributed to roughness associated with limitations that currently exist in commercial 3D printers.

13.
Opt Express ; 21(10): 12363-72, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23736454

RESUMEN

We describe the optical concentration properties of periodic arrays of conically tapered metallic apertures measured using terahertz (THz) time-domain spectroscopy. As a first step in this process, we optimize the geometrical properties of individual apertures, keeping the output aperture diameter fixed, and find that the optimal taper angle is 30°. A consequence of increasing the taper angle is that the effective cutoff frequency red shifts, which can be readily explained using conventional waveguide theory. We then fabricate and measure the transmission properties of a periodic (hexagonal) array of optimized tapered apertures. In contrast to periodic arrays of subwavelength apertures in thin metal films, which are characterized by narrowband transmission resonances associated with the periodic spacing, here we observe broadband enhanced transmission above the effective cutoff frequency. Further enhancement in the concentration capabilities of the array can be achieved by tilting the apertures towards the array center, although the optical throughput of individual tapered apertures is reduced with increasing tilt angle. Finally, we discuss possible future directions that utilize cascaded structures, as a means for obtaining further enhancement in the amplitude of the transmitted THz radiation.


Asunto(s)
Lentes , Iluminación/instrumentación , Metales/química , Refractometría/instrumentación , Radiación Terahertz , Diseño de Equipo , Análisis de Falla de Equipo
14.
Opt Express ; 21(25): 30895-902, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24514662

RESUMEN

We investigate the spectral transmission properties of conically tapered metallic apertures made in a split metallic plate using terahertz (THz) time-domain spectroscopy. The introduction of even a small gap between the two halves of the plate results in spectral broadening of the transmitted radiation due to a reduction of the cut-off effect. We find that the resulting transmission spectrum can be described as a weighted sum of the spectra associated with a tapered aperture and a parallel plate waveguide, with the gap spacing controlling the relative ratio. We further find that the field concentration properties of the aperture in a split plate are limited by the radiation leakage through the gap and propose a tapered shell structure to realize strong broadband field concentration. Using numerical simulations, we validate these observations and yield insight into the mode properties within the split tapered aperture.

15.
Opt Express ; 20(14): 15222-31, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22772220

RESUMEN

Using terahertz (THz) transmission measurements through two-dimensional Fibonacci deterministic subwavelength hole arrays fabricated in metal foils, we find that the surface plasmon-polariton (SPP) correlation lengths for aperiodic resonances are smaller than those associated with the underlying grid. The enhanced transmission spectra associated with these arrays contain two groups of Fano-type resonances: those related to the two-dimensional Fibonacci structure and those related to the underlying hole grid array upon which the aperiodic Fibonacci array is built. For both groups the destructive interference frequencies at which transmission minima occur closely match prominent reciprocal vectors in the hole array (HA) structure-factor in reciprocal space. However the Fibonacci-related transmission resonances are much weaker than both their calculated Fourier intensity in k space and the grid-related resonances. These differences may arise from the complex, multi-fractal dispersion relations and scattering from the underlying grid arrays. We also systematically studied and compared the transmission resonance strength of Fibonacci HA and periodic HA lattices as a function of the number of holes in the array structure. We found that the Fibonacci-related resonance strengths are an order of magnitude weaker than that of the periodic HA, consistent with the smaller SPP correlation length for the aperiodic structure.

16.
Opt Express ; 20(11): 12119-26, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22714198

RESUMEN

We experimentally demonstrate an approach to create reconfigurable plasmonic devices in which the geometry of the device can be changed dramatically. The specific embodiment we present utilizes eutectic gallium indium (EGaIn), a metal that is liquid at room temperature, which is injected into or withdrawn from channels encapsulated by a polydimethylsiloxane (PDMS) bullseye mold fabricated on a gold coated substrate. Using terahertz (THz) time-domain spectroscopy, we measure the enhanced transmission properties of a single subwavelength aperture surrounded by differing numbers of concentric annular EGaIn rings. The results obtained from different device geometries, with either a single or multiple rings, are performed using a single device, demonstrating true reconfigurability. We explain the properties of the observed temporal waveforms using a simple time-domain model. This represents, we believe, a first step in developing more complex reconfigurable plasmonic devices.


Asunto(s)
Diseño Asistido por Computadora , Metales/química , Modelos Teóricos , Resonancia por Plasmón de Superficie/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación , Soluciones/química
17.
Opt Express ; 20(3): 2346-53, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22330473

RESUMEN

We demonstrate that liquid metals support surface plasmon-polaritons (SPPs) at terahertz (THz) frequencies, and can thus serve as an attractive material system for a wide variety of plasmonic and metamaterial applications. We use eutectic gallium indium (EGaIn) as the liquid metal injected into a polydimethylsiloxane (PDMS) mold fabricated by soft lithography techniques. Using this approach, we observe enhanced THz transmission through a periodic array of subwavelength apertures. Despite of the fact that the DC conductivity of EGaIn is an order of magnitude smaller than many conventional metals, we clearly observe well-defined transmission resonances. This represents a first step in developing reconfigurable and tunable plasmonic devices that build upon well-developed microfluidic capabilities.


Asunto(s)
Galio/química , Indio/química , Lentes , Soluciones/química , Resonancia por Plasmón de Superficie/métodos
18.
Opt Express ; 19(19): 18678-86, 2011 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-21935237

RESUMEN

We experimentally demonstrate the ability to create additional transmission resonances in a double-layer aperture array by varying the interlayer gap spacing. In the case of periodic aperture arrays, these additional resonances are sharply peaked, while for random aperture arrays the resonances are broad. Surprisingly, these additional resonances only occur when the interlayer gap spacing is greater than half the aperture spacing on a single array. Since there is no corresponding periodicity in the random arrays, these resonances occur regardless of how small the gap spacing is made. This phenomenon can be accurately modeled only if the correct frequency-dependent complex dielectric function of a metal film perforated with subwavelength apertures is used. Using THz time-domain spectroscopy, we are able to directly obtain the complex dielectric response function from the THz experimental transmission measurements. We conclude by demonstrating several passive free-space THz filters using multilayer aperture arrays. Importantly, we show that the magnitude of the lowest order resonance can be approximately maintained, while the background transmission can be significantly suppressed leading to a significant improvement in the optical filter fidelity.

19.
Opt Express ; 19(2): 1072-80, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21263646

RESUMEN

We experimentally demonstrate planar plasmonic THz waveguides using metal films that are periodically perforated with complementary split ring resonators (CSRRs). The waveguide transmission spectra exhibit numerous transmission resonances. While the geometry is commonly used in developing negative index materials, the excitation geometry used here does not allow for conventional metamaterial response. Instead, we show that all of the observed resonances can be determined from the geometrical properties of the CSRR apertures. Surprisingly, the Bragg condition does not appear to limit the frequency extent of the observed resonances. The results suggest that metamaterial-inspired geometries may be useful for developing THz guided-wave devices.


Asunto(s)
Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Radiación Terahertz
20.
Opt Express ; 18(22): 23466-71, 2010 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21164689

RESUMEN

We demonstrate a slot waveguide-based splitter for broadband terahertz (THz) radiation using a T-shaped waveguide structure. The structure consists of a fixed-width input waveguide and variable-width output waveguides. We experimentally measure and numerically simulate the THz transmission and reflection properties as a function of the output waveguide width and show that a transmission line model can effectively describe the observations. Based on the high degree of agreement between the experimental results, numerical simulations and the model, we infer the optimal waveguide parameters. The device structure offers new possibilities in designing compact THz devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...