Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 204: 117595, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543977

RESUMEN

Small, low-income, and rural communities across the United States are disproportionately exposed to arsenic contaminated drinking water because existing treatment solutions are too expensive and difficult to operate. This paper describes efforts to overcome some barriers and limitations of conventional iron electrocoagulation (Fe-EC) to enable its use in the rural Californian (U.S.) context. Barriers and limitations of Fe-EC's application in rural California considered in this work include: 1) Frequent labor intensive electrode cleaning is required to overcome rust accumulation, 2) Electrolysis durations are long, reducing throughput for a given system size, and 3) Waste needs compliance with California standards. We report results from an investigation for overcoming these limitations via a field trial on a farm in Allensworth, a small, low-income, rural community in California. Our strategies to overcome each of the above barriers and limitations are respectively, 1) operating the Fe-EC reactor at high current density to result in sustained Fe production, 2) operating at high charge dosage rate with external H2O2, and 3) characterization of the arsenic-laden waste, and are discussed further in the paper. Main findings are: (1) Fe-EC removed arsenic consistently below the federal (and state) standard of 10 µg/L, (2) high current density failed to sustain Fe production whereas low current density did not, (3) electrolysis time decreased from > 1 hour to < 2 min with H2O2 dosing of 5 mg/L at higher charge dosage rates, (4) dilution of As-sludge is required to comply with State's non-hazardous waste status, and (5) discrepancies were observed between lab and field results in using current density to overcome labor-intensive electrode cleanings. Finally, implications of overcoming limitations to scale-up of Fe-EC in relevant California communities are discussed.


Asunto(s)
Arsénico , Agua Potable , California , Peróxido de Hidrógeno , Tecnología
2.
Environ Sci Technol ; 54(10): 6094-6103, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32315523

RESUMEN

Millions of people are exposed to toxic levels of dissolved arsenic in groundwater used for drinking. Iron electrocoagulation (FeEC) has been demonstrated as an effective technology to remove arsenic at an affordable price. However, FeEC requires long operating times (∼hours) to remove dissolved arsenic due to inherent kinetics limitations. Air cathode Assisted Iron Electrocoagulation (ACAIE) overcomes this limitation by cathodically generating H2O2 in situ. In ACAIE operation, rapid oxidation of Fe(II) and complete oxidation and removal of As(III) are achieved. We compare FeEC and ACAIE for removing As(III) from an initial concentration of 1464 µg/L, aiming for a final concentration of less than 4 µg/L. We demonstrate that at short electrolysis times (0.5 min), i.e., high charge dosage rates (1200 C/L/min), ACAIE consistently outperformed FeEC in bringing arsenic levels to less than WHO-MCL of 10 µg/L. Using XRD and XAS data, we conclusively show that poor arsenic removal in FeEC arises from incomplete As(III) oxidation, ineffective Fe(II) oxidation and the formation of Fe(II-III) (hydr)oxides at short electrolysis times (<20 min). Finally, we report successful ACAIE performance (retention time 19 s) in removing dissolved arsenic from contaminated groundwater in rural California.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Electrocoagulación , Peróxido de Hidrógeno , Hierro , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA