Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol J ; 40(1): 59-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326959

RESUMEN

A comprehensive survey of mungbean-growing areas was conducted to observe leaf spot disease caused by Alternaria alternata. Alternaria leaf spot symptoms were observed on the leaves. Diversity of 50 genotypes of mungbean was assessed against A. alternata and data on pathological traits was subjected to cluster analysis. The results showed that genotypes of mungbean were grouped into four clusters based on resistance parameters under the influence of disease. The principal component biplot demonstrated that all the disease-related parameters (% disease incidence, % disease intensity, lesion area, and % of infection) were strongly correlated with each other. Alt a 1 gene that is precisely found in Alternaria species and is responsible for virulence and pathogenicity. Alt a 1 gene was amplified using gene specific primers. The isolated pathogen produced similar symptoms when inoculated on mungbean and tobacco. The sequence analysis of the internal transcribed spacer (ITS) region, a 600 bp fragment amplified using specific primers, ITS1 and ITS2 showed 100% identity with A. alternata. Potato virus X (PVX) -based silencing vector expressing Alt a 1 gene was constructed to control this pathogen through RNA interference in tobacco. Out of 50 inoculated plants, 9 showed delayed onset of disease. Furthermore, to confirm our findings at molecular level semi-quantitative reverse transcriptase polymerase chain reaction was used. Both phenotypic and molecular investigation indicated that RNAi induced through the VIGS vector was efficacious in resisting the pathogen in the model host, Tobacco (Nicotiana tabacum). To the best of our knowledge, this study has been reported for the first time.

2.
Funct Plant Biol ; 512024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354689

RESUMEN

The SPL gene family (for Squamosa Promoter-binding like Proteins) represents specific transcription factors that have significant roles in abiotic stress tolerance, development and the growth processes of different plants, including initiation of the leaf, branching and development of shoot and fruits. The SPL gene family has been studied in different plant species; however, its role is not yet fully explored in pigeon pea (Cajanus cajan ). In the present study, 11 members of the CcSPL gene family were identified in C. cajan . The identified SPLs were classified into nine groups based on a phylogenetic analysis involving SPL protein sequences from C. cajan , Arabidopsis thaliana , Cicer arietinum , Glycine max , Phaseolus vulgaris , Vigna unguiculata and Arachis hypogaea . Further, the identification of gene structure, motif analysis, domain analysis and presence of cis -regulatory elements in the SPL family members were studied. Based on RNA-sequencing data, gene expression analysis was performed, revealing that CcSPL2.1, 3 and 13A were significantly upregulated for salt-tolerance and CcSPL14 and 15 were upregulated in a salt-susceptible cultivar. Real-time qPCR validation indicated that CcSPL3, 4, 6 and 13A were upregulated under salt stress conditions. Therefore, molecular docking was performed against the proteins of two highly expressed genes (CcSPL3 and CcSPL14 ) with three ligands: abscisic acid, gibberellic acid and indole-3-acetic acid. Afterward, their binding affinity was obtained and three-dimensional structures were predicted. In the future, our study may open avenues for harnessing CcSPL genes in pigeon pea for enhanced abiotic stress resistance and developmental traits.


Asunto(s)
Cajanus , Cajanus/genética , Cajanus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Filogenia , Simulación del Acoplamiento Molecular , Estrés Fisiológico/genética , Flores/metabolismo
3.
Front Microbiol ; 14: 1224221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799604

RESUMEN

Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.

4.
Genes (Basel) ; 14(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37107625

RESUMEN

Crop wild relatives contain a greater variety of phenotypic and genotypic diversity compared to their domesticated counterparts. Trifolium crop species have limited genetic diversity to cope with biotic and abiotic stresses due to artificial selection for consumer preferences. Here, we investigated the distribution and evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes in the genus of Trifolium with the objective to identify reference NLR genes. We identified 412, 350, 306, 389 and 241 NLR genes were identified from Trifolium. subterraneum, T. pratense, T. occidentale, subgenome-A of T. repens and subgenome-B of T. repens, respectively. Phylogenetic and clustering analysis reveals seven sub-groups in genus Trifolium. Specific subgroups such as G4-CNL, CCG10-CNL and TIR-CNL show distinct duplication patterns in specific species, which suggests subgroup duplications that are the hallmarks of their divergent evolution. Furthermore, our results strongly suggest the overall expansion of NLR repertoire in T. subterraneum is due to gene duplication events and birth of gene families after speciation. Moreover, the NLRome of the allopolyploid species T. repens has evolved asymmetrically, with the subgenome -A showing expansion, while the subgenome-B underwent contraction. These findings provide crucial background data for comprehending NLR evolution in the Fabaceae family and offer a more comprehensive analysis of NLR genes as disease resistance genes.


Asunto(s)
Fabaceae , Trifolium , Trifolium/genética , Diploidia , Filogenia , Poliploidía
5.
Saudi J Biol Sci ; 30(2): 103527, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36568408

RESUMEN

Asthma is a significant health-care burden that has great impact on the quality of life of patients and their families. The limited amount of previously reported data and complicated pathophysiology of asthma make it a difficult to treat and significant economic burden on public healthcare systems. Ferula asafoetida is an herbaceous, monoecious, perennial plant of the Umbelliferae family. In Asia, F. asafoetida is used to treat a range of diseases and disorders, including asthma. Several in vitro studies demonstrated the therapeutic efficacy of F. asafoetida against asthma. Nevertheless, the precise molecular mechanism is yet to be discovered. In the framework of current study, network pharmacology approach was used to identify the bioactive compounds of F. asafoetida in order to better understand its molecular mechanism for the treatment of asthma. In present work, we explored a compound-target-pathway network and discovered that assafoetidin, cynaroside, farnesiferol-B, farnesiferol-C, galbanic-acid, and luteolin significantly influenced the development of asthma by targeting MAPK3, AKT1 and TNF genes. Later, docking analysis revealed that active constituents of F. asafoetida bind stably with three target proteins and function as asthma repressor by regulating the expression of MAPK3, AKT1 and TNF genes. Thus, integration of network pharmacology with molecular docking revealed that F. asafoetida prevent asthma by modulating asthma-related signaling pathways. This study lays the basis for establishing the efficacy of multi-component, multi-target compound formulae, as well as investigating new therapeutic targets for asthma.

6.
Pathogens ; 11(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35890008

RESUMEN

Alphasatellites are small single-stranded circular DNA molecules associated with geminiviruses and nanoviruses. In this study, a meta-analysis of known alphasatellites isolated from the genus Gossypium (cotton) over the last two decades was performed. The phylogenetic and pairwise sequence identity analysis suggested that cotton-infecting begomoviruses were associated with at least 12 different alphasatellites globally. Three out of twelve alphasatellite were associated with cotton leaf curl geminiviruses but were not isolated from cotton plants. The cotton leaf curl Multan alphasatellite, which was initially isolated from cotton, has now been reported in several plant species, including monocot plants such as sugarcane. Our recombination analysis suggested that four alphasatellites, namely cotton leaf curl Lucknow alphasatellites, cotton leaf curl Multan alphasatellites, Ageratum yellow vein Indian alphasatellites and Ageratum enation alphasatellites, evolved through recombination. Additionally, high genetic variability was detected among the cotton-infecting alphasatellites at the genome level. The nucleotide substitution rate for the replication protein of alphasatellites (alpha-Rep) was estimated to be relatively high (~1.56 × 10-3). However, unlike other begomoviruses and satellites, the first codon position of alpha-Rep rapidly changed compared to the second and third codon positions. This study highlights the biodiversity and recombination of alphasatellites associated with the leaf curl diseases of cotton crops.

7.
Plants (Basel) ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834601

RESUMEN

Potassium is the most important and abundant inorganic cation in plants and it can comprise up to 10% of a plant's dry weight. Plants possess complex systems of transporters and channels for the transport of K+ from soil to numerous parts of plants. Cajanus cajan is cultivated in different regions of the world as an economical source of carbohydrates, fiber, proteins, and fodder for animals. In the current study, 39 K+ transport genes were identified in C. cajan, including 25 K+ transporters (17 carrier-like K+ transporters (KUP/HAK/KTs), 2 high-affinity potassium transporters (HKTs), and 6 K+ efflux transporters (KEAs) and 14 K+ channels (9 shakers and 5 tandem-pore K+ channels (TPKs). Chromosomal mapping indicated that these genes were randomly distributed among 10 chromosomes. A comparative phylogenetic analysis including protein sequences from Glycine max, Arabidopsis thaliana, Oryza sativa, Medicago truncatula Cicer arietinum, and C. cajan suggested vital conservation of K+ transport genes. Gene structure analysis showed that the intron/exon organization of K+ transporter and channel genes is highly conserved in a family-specific manner. In the promoter region, many cis-regulatory elements were identified related to abiotic stress, suggesting their role in abiotic stress response. Abiotic stresses (salt, heat, and drought) adversely affect chlorophyll, carotenoids contents, and total soluble proteins. Furthermore, the activities of catalase, superoxide, and peroxidase were altered in C. cajan leaves under applied stresses. Expression analysis (RNA-seq data and quantitative real-time PCR) revealed that several K+ transport genes were expressed in abiotic stress-responsive manners. The present study provides an in-depth understanding of K+ transport system genes in C. cajan and serves as a basis for further characterization of these genes.

8.
PLoS One ; 16(10): e0259083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34695157

RESUMEN

Hearing impairment (HI) is a highly heterogeneous genetic disorder and is classified into nonsyndromic (without any other clinical manifestations) and syndromic (if combined with other clinical presentations) forms. Variations in GJB2 gene are the leading cause of autosomal recessive nonsyndromic hearing loss (ARNSHL) in several populations worldwide. This study was carried out to investigate the prevalence of GJB2 variations in severe-to-profound hearing impaired families of Southern Punjab of Pakistan. Ten families segregating ARNSHL were recruited from different areas of the region. Sanger sequencing of GJB2 coding region was carried out. In two out of ten families, NM_004004:c.*71G>A (p.(Trp24*)) and NM_004004:c.358_360del (p.(Glu120del)) homozygous variants were identified as the cause of hearing loss. Our study showed that GJB2-related hearing loss accounts for at least 20% of all cases with severe-to-profound hearing loss in the Southern Punjab population of Pakistan.


Asunto(s)
Conexina 26/genética , Sordera/genética , Predisposición Genética a la Enfermedad , Mutación , Femenino , Homocigoto , Humanos , Masculino , Pakistán , Linaje
9.
PLoS One ; 16(2): e0245072, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33534822

RESUMEN

Middle East respiratory syndrome (MERS-COV), first identified in Saudi Arabia, was caused by a novel strain of coronavirus. Outbreaks were recorded from different regions of the world, especially South Korea and the Middle East, and were correlated with a 35% mortality rate. MERS-COV is a single-stranded, positive RNA virus that reaches the host by binding to the receptor of dipeptidyl-peptides. Because of the unavailability of the vaccine available for the protection from MERS-COV infection, the rapid case detection, isolation, infection prevention has been recommended to combat MERS-COV infection. So, vaccines for the treatment of MERS-COV infection need to be developed urgently. A possible antiviral mechanism for preventing MERS-CoV infection has been considered to be MERS-CoV vaccines that elicit unique T-cell responses. In the present study, we incorporated both molecular docking and immunoinformatic approach to introduce a multiepitope vaccine (MEP) against MERS-CoV by selecting 15 conserved epitopes from seven viral proteins such as three structural proteins (envelope, membrane, and nucleoprotein) and four non-structural proteins (ORF1a, ORF8, ORF3, ORF4a). The epitopes, which were examined for non-homologous to host and antigenicity, were selected on the basis of conservation between T-cell, B-cell, and IFN-γ epitopes. The selected epitopes were then connected to the adjuvant (ß-defensin) at the N-terminal through an AAY linker to increase the immunogenic potential. Structural modelling and physiochemical characteristic were applied to the vaccine construct developed. Afterwards the structure has been successfully docked with antigenic receptor, Toll-like receptor 3 (TLR-3) and in-silico cloning ensures that its expression efficiency is legitimate. Nonetheless the MEP presented needs tests to verify its safety and immunogenic profile.


Asunto(s)
Epítopos/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Proteoma , Vacunas Virales/inmunología , Secuencia de Aminoácidos , Sitios de Unión , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Diseño de Fármacos , Epítopos/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/inmunología , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/inmunología , Vacunas Virales/química
10.
3 Biotech ; 11(1): 14, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33442513

RESUMEN

The replication-associated (Rep) proteins of pathogenic begomoviruses, including cotton leaf curl Multan virus (CLCuMuV) and pedilanthus leaf curl virus (PeLCV), interact with the DNA replication machinery of their eukaryotic hosts. The analysis of Rep protein sequences showed that there is 13-28% sequence variation among CLCuMuV and PeLCV isolates, with phylogenetic clusters that can separated at least in part based on the country of origin of the respective viruses. To identify specific host factors involved in the virus replication cycle, we conducted yeast two-hybrid assays to detect possible interactions between the CLCuMuV and PeLCV Rep proteins and 30 protein components of the Saccharomyces cerevisiae DNA replication machinery. This showed that the proliferating cell nuclear antigen (PCNA) protein of S. cerevisiae interacts with Rep proteins from both CLCuMuV and PeLCV. We used the yeast PCNA sequence in BLAST comparisons to identify two PCNA orthologs each in Gossypium hirsutum (cotton), Arabidopsis thaliana (Arabidopsis), and Nicotiana benthamiana (tobacco). Sequence comparisons showed 38-40% identity between the yeast and plant PCNA proteins, and > 91% identity among the plant PCNA proteins, which clustered together in one phylogenetic group. The expression of the six plant PCNA proteins in the yeast two-hybrid system confirmed interactions with the CLCuMuV and PeLCV Rep proteins. Our results demonstrate that the interaction of begomovirus Rep proteins with eukaryotic PCNA proteins is strongly conserved, despite significant evolutionary variation in the protein sequences of both of the interacting partners.

11.
Virus Genes ; 56(1): 16-26, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31773493

RESUMEN

Betasatellites are a group of circular, single-stranded DNA molecules that are frequently found to be associated with monopartite begomoviruses of the family Geminiviridae. Betasatellites require their helper viruses for replication, movement, and encapsidation and they are often essential for induction of typical disease symptoms. The ßC1 protein encoded by betasatellites is multifunctional that participates in diverse cellular events. It interferes with several cellular processes like normal development, chloroplasts, and innate immune system of plants. Recent research has indicated ßC1 protein interaction with cellular proteins and its involvement in modulation of the host's cell cycle and symptom determination. This article focuses on the functional mechanisms of ßC1 and its interactions with other viral and host proteins.


Asunto(s)
Begomovirus/fisiología , Enfermedades de las Plantas/virología , Virus Satélites/fisiología , Begomovirus/clasificación , Begomovirus/genética , Begomovirus/aislamiento & purificación , ADN Satélite/genética , ADN Satélite/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Virus Satélites/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
12.
Cell Mol Biol (Noisy-le-grand) ; 65(7): 34-37, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31880515

RESUMEN

Chickpea chlorotic dwarf virus (CpCDV), a member of genus Mastrevirus (family Geminiviridae) is an important viral pathogen of chickpea and other legume crops in Middle East, North Africa, India and Pakistan. Among sixteen known strains of CpCDV three are known to infect legume crops in Punjab province of Pakistan. In this study diversity of CpCDV was explored in Khyber Pakhtunkhwa (KP) province of Pakistan. In year 2016, during a survey in the chickpea growing areas of district Dera Ismail Khan, CpCDV infected plants were identified. Leaf samples were collected, and a diagnostic PCR confirmed mastreivrus infection in 4 out of 100 samples. From these samples full-length genome of CpCDV was amplified using specific back-to-back primers. Virus molecules were sequenced to their entirety and sequence analysis of a molecule KRF4 (GenBank accession # KY952837) showed the highest pair wise sequence identity of 97% with a CpCDV molecule (KM229787) isolated from chickpea plant. An SDT analysis revealed it to be the D strain of CpCDV and a recombination detection program (RDP) showed it to be a recombinant between C (KM229780) and L (KT634301) strains of CpCDV. Thus, further supporting the intra-species recombination for CpCDV and presence of the same strain in chickpea growing areas of Pakistan other than Punjab province. This is the first identification of CpCDV (genus Mastrevirus family Geminiviridae) from chickpea (Cicer arietinum) plants in District Dera Ismail Khan, KP province, Pakistan.


Asunto(s)
Cicer/virología , Geminiviridae/genética , Pakistán , Filogenia , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN
13.
Pak J Pharm Sci ; 32(3 (Supplementary)): 1145-1154, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31303583

RESUMEN

Survivin (IAP proteins) is considered as a significant target for anticancer drug research owing to its upregulation in tumor cells to mediate resistance to apoptotic stimulus. The current study aimed to investigate phytochemicals as inhibitors of survivin with caspases to reactivate the functioning of caspases through molecular docking. The compounds namely 2(R), 4(R)-dihydroxypyrrolidine, 4-hydroxy-2-(4-methoxyphenyl)-1,1-dioxo-3,4-dihydrothieno[3,2-e]thiazine-6-sulfonamide, 2,3-Diketo-L-gulonic acid, (3-hydroxy-2-octadeca-9,12-dienoyloxypropyl) octadecanoate, 2-[[4-[[4-[(4-formamido-1-methylimidazole-2-carbonyl)amino]-1-methylimidazole-2-carbonyl]amino]-1-methylimidazole-2-carbonyl]amino]ethyl-dimethylazanium, Picolinic acid and (2-Hydroxy-5-nitrophenyl) dihydrogen phosphate successfully bind inside the pocket of survivin. ADMETsar was used to evaluate the anticancer potential of selected compounds. These compounds can be proposed as effective inhibitors, disrupting the survivin-caspases interaction and reactivating the caspases function of apoptosis. The study might facilitate the development of cost-effective and natural drugs against cancer. However, further validation is essential for confirmation of its drug efficacy and bio-compatibility.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Fitoquímicos/farmacología , Survivin/antagonistas & inhibidores , Survivin/química , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/toxicidad , Caspasas/metabolismo , Simulación por Computador , Humanos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Fitoquímicos/farmacocinética , Fitoquímicos/toxicidad , Conformación Proteica , Survivin/metabolismo , Distribución Tisular
14.
Cell Mol Biol (Noisy-le-grand) ; 65(2): 82-84, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30879469

RESUMEN

Bactrocera zonata is fruit pest mostly attacked on peach and cause heavy destruction in production of peach fruits by sucking their juice. For their management, we start to detect them on basis of their molecular characterization. As mitochondrial genome encodes a gene COI used as biomarker for identification of eukaryotes including insects. In present study, we amplified COI gene and cloned into pTZ57R/T vector (Fermentas). Cloned gene was confirmed through restriction analysis and sequenced through its entirety on both strands from Macrogen (South Korea) by Sanger sequencing method. Different computational tools were utilized for comparative analysis of sequence with other related sequences retrieved from databases. Related species were identified through phylogenetic analysis using Mega 7 tool. Pairwise sequence alignment showed the sequence identity about 96% with Bactrocera zonata. By identifying the pests with more authentic molecular biomarker may help the research to control them more effectively in future.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Genes Mitocondriales , Tephritidae/enzimología , Tephritidae/genética , Algoritmos , Animales , Pakistán , Filogenia , Programas Informáticos , Especificidad de la Especie
15.
Heliyon ; 5(3): e01303, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30899831

RESUMEN

Cotton leaf curl Multan virus (CLCuMuV) belonging to begomoviruses (Family Geminiviridae) can infect cotton and many other agricultural crops. Betasatellite associated with CLCuMuV i.e., cotton leaf curl Multan betasatellite (CLCuMuB) is a small circular single-stranded deoxyribose nucleic acid (ssDNA) molecule that is essential for CLCuMuV to induce disease symptoms. Betasatellite molecule contains a ßC1 gene encoding for a pathogenicity determinant multifunctional protein, which extensively interacts with host plant machinery to cause virus infection. In this study the interaction of ßC1 with selected plant flavonoids has been studied. The study was focused on sequence analysis, three-dimensional structural modeling and docking analysis of ßC1 protein of CLCuMuB. Sequence analysis and physicochemical properties showed that ßC1 is negatively charged protein having more hydrophilic regions and is not very stable. Three-dimensional model of this protein revealed three helical, four beta pleated sheets and four coiled regions. The score of docking experiments using flavonoids as ligand indicated that plant flavonoids robinetinidol-(4alpha,8)-gallocatechin, quercetin 7-O-beta-D-glucoside, swertianolin, 3',4',5-trihydroxy-3-methoxyflavon-7-olate, agathisflavone, catiguanin B, 3',4',5,6-tetrahydroxy-3,7-dimethoxyflavone, quercetin-7-O-[alpha-L-rhamnopyranosyl(1->6)-beta-D-galactopyranoside], prunin 6″-O-gallate and luteolin 7-O-beta-D-glucosiduronic acid have strong binding with active site of ßC1 protein. The results obtained from this study clearly indicate that flavonoids are involved in defense against the virus infection, as these molecules binds to the active site of ßC1 protein. This information might be interesting to study plant defense mechanism based on the special compounds produced by the plants.

16.
Protein Pept Lett ; 25(2): 120-128, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29359657

RESUMEN

BACKGROUND: Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels. Therefore, membrane transporter engineering is gaining increasing attentions from all over the world. OBJECTIVE: The main objective of this review is to explore the ways to increase the microbial production of biofuels by counteracting the cellular toxicity and facilitating their easier recovery from media. CONCLUSION: Microbial synthesis of industrially viable compounds such as biofuels has been increased due to genomic revolution. Moreover, advancements in protein engineering, gene regulation, pathway portability, metabolic engineering and synthetic biology led the focus towards the development of robust and cost-effective systems for biofuel production. The most convenient way to combat cellular toxicity and to secrete biofuels is the use of membrane transport system. The use of membrane transporters is currently a serious oversight as do not involve chemical changes and contribute greatly to efflux biofuels in extracellular milieu. However, overexpression of transport systems can also be detrimental to cell, so, in future, structure-based engineering of transporters can be employed to evaluate optimum expression range, to increase biofuel specificity and transport rate through structural studies of biofuel molecules.


Asunto(s)
Alcoholes/química , Bacterias/genética , Biocombustibles , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Cinética , Ingeniería de Proteínas/métodos , Transducción de Señal , Termodinámica
17.
PLoS One ; 11(3): e0151161, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963635

RESUMEN

The spread of cotton leaf curl disease in China, India and Pakistan is a recent phenomenon. Analysis of available sequence data determined that there is a substantial diversity of cotton-infecting geminiviruses in Pakistan. Phylogenetic analyses indicated that recombination between two major groups of viruses, cotton leaf curl Multan virus (CLCuMuV) and cotton leaf curl Kokhran virus (CLCuKoV), led to the emergence of several new viruses. Recombination detection programs and phylogenetic analyses showed that CLCuMuV and CLCuKoV are highly recombinant viruses. Indeed, CLCuKoV appeared to be a major donor virus for the coat protein (CP) gene, while CLCuMuV donated the Rep gene in the majority of recombination events. Using recombination free nucleotide datasets the substitution rates for CP and Rep genes were determined. We inferred similar nucleotide substitution rates for the CLCuMuV-Rep gene (4.96X10-4) and CLCuKoV-CP gene (2.706X10-4), whereas relatively higher substitution rates were observed for CLCuMuV-CP and CLCuKoV-Rep genes. The combination of sequences with equal and relatively low substitution rates, seemed to result in the emergence of viral isolates that caused epidemics in Pakistan and India. Our findings also suggest that CLCuMuV is spreading at an alarming rate, which can potentially be a threat to cotton production in the Indian subcontinent.


Asunto(s)
Geminiviridae/genética , Gossypium/virología , Enfermedades de las Plantas/virología , China , Variación Genética , India , Mutación , Pakistán , Filogenia , Recombinación Genética
18.
Virus Genes ; 49(1): 124-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24781196

RESUMEN

The Begomovirus genus of the family Geminiviridae comprises the largest group of geminiviruses. The list of begomoviruses is continuously increasing as a result of improvement in the methods for identification. Ornamental rose plants (Rosa chinensis) with highly stunted growth and leaf curling were found in Faisalabad, Pakistan. Plants were analyzed for begomovirus infection, through rolling circle amplification and PCR methods. Based on complete genome sequence homologies with other begomoviruses, a new begomovirus species infecting the rose plants was discovered. In this paper, we propose a new species name, Rose leaf curl virus (RoLCuV), for the virus. RoLCuV showed close identity (83 %) with Tomato leaf curl Pakistan virus, while associated betasatellite showed 96 % identity with Digera arvensis yellow vein betasatellite (DiAYVB), justifying a new isolate for the betasatellite. Recombination analysis of newly identified begomovirus revealed it as a recombinant of tomato leaf curl Pakistan virus from its coat protein region. The infectious molecules for virus/satellite were prepared and inoculated through Agrobacterium tumefaciens to N. benthamiana plants. RoLCuV alone was unable to induce any level of symptoms on N. benthamiana plants, but co-inoculation with cognate betasatellite produced infection symptoms. Further investigation to understand the trans-replication ability of betasatellites revealed their flexibility to interact with Rose leaf curl virus.


Asunto(s)
Begomovirus/genética , Begomovirus/aislamiento & purificación , ADN Satélite/genética , ADN Viral/química , ADN Viral/genética , Genoma Viral , Rosa/virología , Agrobacterium tumefaciens/genética , Begomovirus/crecimiento & desarrollo , Análisis por Conglomerados , Datos de Secuencia Molecular , Pakistán , Filogenia , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN , Homología de Secuencia , Nicotiana/virología , Transformación Genética
19.
Virol J ; 8: 499, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22047503

RESUMEN

BACKGROUND: RNA interference (RNAi) is a homology-dependant gene silencing mechanism and has been widely used to engineer resistance in plants against RNA viruses. However, its usefulness in delivering resistance against plant DNA viruses belonging to family Geminiviridae is still being debated. Although the RNAi approach has been shown, using a transient assay, to be useful in countering monocotyledonous plant-infecting geminiviruses of the genus Mastrevirus, it has yet to be investigated as a means of delivering resistance to dicot-infecting mastreviruses. Chickpea chlorotic dwarf Pakistan virus (CpCDPKV) is a legume-infecting mastrevirus that affects chickpea and other leguminous crops in Pakistan. RESULTS: Here a hairpin (hp)RNAi construct containing sequences encompassing part of replication-associated protein gene, intergenic region and part of the movement protein gene of CpCDPKV under the control of the Cauliflower mosaic virus 35S promoter has been produced and stably transformed into Nicotiana benthamiana. Plants harboring the hairpin construct were challenged with CpCDPKV. All non-transgenic N. benthamiana plants developed symptoms of CpCDPKV infection within two weeks post-inoculation. In contrast, none of the inoculated transgenic plants showed symptoms of infection and no viral DNA could be detected by Southern hybridization. A real-time quantitative PCR analysis identified very low-level accumulation of viral DNA in the inoculated transgenic plants. CONCLUSIONS: The results presented show that the RNAi-based resistance strategy is useful in protecting plants from a dicot-infecting mastrevirus. The very low levels of virus detected in plant tissue of transgenic plants distal to the inoculation site suggest that virus movement and/or viral replication was impaired leading to plants that showed no discernible signs of virus infection.


Asunto(s)
Geminiviridae/crecimiento & desarrollo , Geminiviridae/inmunología , Nicotiana/inmunología , Nicotiana/virología , Plantas Modificadas Genéticamente , Interferencia de ARN , Caulimovirus/genética , Geminiviridae/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , Nicotiana/fisiología
20.
Virology ; 405(2): 300-8, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20598726

RESUMEN

Alphasatellites and betasatellites are begomovirus-associated single-stranded circular DNA molecules. Two distinct alphasatellites, Gossypium darwinii symptomless alphasatellite and Gossypium mustelinium symptomless alphasatellite, were previously isolated from Gossypium davidsonii and G.mustelinium. Here we show that the replication-associated proteins (Rep: a rolling-circle replication initiator protein) encoded by these alphasatellites interact with the Rep and C4 proteins encoded by their helper begomovirus, Cotton leaf curl Rajasthan virus (CLCuRaV), in a yeast two-hybrid assay. Both the alphasatellite-encoded Reps were found to have strong gene silencing suppressor activity, in contrast to the betasatellite-encoded betaC1 and CLCuRaV-encoded C2, C4 and V2 proteins. The presence of alphasatellites maintained suppression of gene silencing in the youngest, actively growing tissue of CLCuRaV-betasatellite-infected plants. This is the first demonstration of a rolling-circle replication initiator protein with suppressor of gene silencing activity and provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus-betasatellite complexes.


Asunto(s)
Begomovirus/patogenicidad , ADN Helicasas/metabolismo , ADN Viral/genética , Regulación Viral de la Expresión Génica , Interferencia de ARN , Transactivadores/metabolismo , Begomovirus/genética , Begomovirus/aislamiento & purificación , ADN Helicasas/genética , ADN Satélite/genética , ADN Satélite/metabolismo , ADN Viral/metabolismo , Gossypium/genética , Gossypium/virología , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Interferencia de ARN/efectos de los fármacos , Nicotiana/virología , Transactivadores/genética , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...