Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683906

RESUMEN

Rubber materials play a key role in preventing hydrogen gas leakage in high-pressure hydrogen facilities. Therefore, it is necessary to investigate rubber materials exposed to high-pressure hydrogen to ensure operational safety. In this study, permeation, volume swelling, hydrogen content, and mechanical characteristics of acrylonitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), and fluorocarbon (FKM) samples exposed to pressures of 35 and 70 MPa were investigated. The results showed that the volume recovery and hydrogen desorption behavior of EPDM with the highest permeation were fast whereas those of FKM with the lowest permeation were slow. The volume of NBR with the highest hydrogen content expanded after decompression. In contrast, FKM swelled the most despite having the lowest hydrogen content. After exposure to high-pressure hydrogen, the compression set (CS) slightly increased due to internal cracks, but the tensile strength decreased significantly with increasing pressure despite the absence of cracks in the fracture area of all tensile specimens. It was concluded that the decrease in tensile strength is closely related to the volume increase because of the relationship between the relative true strength and the volume ratio.

2.
Polymers (Basel) ; 14(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35406341

RESUMEN

We developed a method for characterizing permeation parameters in hydrogen sorption and desorption processes in polymers using the volumetric measurement technique. The technique was utilized for three polymers: nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), and fluoroelastomer (FKM). The total uptake (C∞), total desorbed content (C0), diffusivity in sorption (Ds), and diffusivity in desorption (Dd) of hydrogen in the polymers were determined versus the sample diameter used in both processes. For all the polymers, the diameter dependence was not detected for C∞ and C0. The average C∞ and C0 at 5.75 MPa were 316 wt∙ppm and 291 wt∙ppm for NBR, 270 wt∙ppm and 279 wt∙ppm for EPDM, and 102 wt∙ppm and 93 wt∙ppm for FKM. The coincidence of C∞ and C0 in the sorption and desorption process indicated physisorption upon introducing hydrogen molecules into the polymers. The larger Dd in the desorption process than Ds could be attributed to an increased amorphous phase and volume swelling after decompression. The equilibrium time to reach the saturation of the hydrogen content in both processes was experimentally confirmed as proportional to the squared radius and consistent with the COMSOL simulation. This method could be used to predict the equilibrium time of the sorption time, depending on the radius of the polymers without any measurement.

3.
Sci Rep ; 12(1): 3328, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228634

RESUMEN

We demonstrate a simple experimental technology for characterizing the gas permeation properties of H2, He, N2 and Ar absorbed in polymers. This is based on the volumetric measurement of released gas and an upgraded diffusion analysis program after high-pressure exposure. Three channel measurements of sorption content of gases emitted from polymers after decompression are simultaneously conducted, and then, the gas uptake/diffusivity as a function of exposed pressure are determined in nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM) rubbers, low-density polyethylene (LDPE) and high-density polyethylene (HDPE), which are used for gas sealing materials under high pressure. The pressure-dependent gas transport behaviors of the four gases are presented and compared. Gas sorption follows Henry's law up to 9 MPa, while pressure-dependent diffusion behavior is not observed below 6 MPa. The magnitude of the diffusivity of the four gases decreases in the order DHe > DH2 > DAr > DN2 in all polymers, closely related to the kinetic diameter of the gas molecules. The dependence of gas species on solubility is in contrast to that on diffusivity. The linear correlation between logarithmic solubility and critical temperature of the gas molecule was newly observed.

4.
Polymers (Basel) ; 14(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35215669

RESUMEN

In the actual application of gas transport properties under high pressure, the important factors are sample size dependence and permeation efficiency, related to gas sorption. With a modified volumetric analysis technique, we firstly measured the overall diffusion properties and equilibrium times for reaching the saturation of hydrogen content in both hydrogen sorption and desorption processes. The measured parameters of total uptake (C∞), total desorbed content (C0), diffusion coefficient in sorption (Ds), diffusion coefficient in desorption (Dd), sorption equilibrium time (ts) and desorption equilibrium time (td) of hydrogen in two polymers were determined relative to the diameter and thickness of the cylindrical-shaped polymers in the two processes. C∞ and C0 did not demonstrate an appreciable volume dependence for all polymers. The identical values of C∞ and C0 indicate the reversibility between sorption and desorption, which is interpreted by the occurrence of physisorption by sorbed hydrogen molecules. However, the measured diffusivity of the polymers was found to be increased with increasing thickness above 5 mm. Moreover, the larger Dd values measured in the desorption process compared to Ds may be attributed to an increased amorphous phase and volume swelling caused by increased hydrogen voids and polymer chain scission after decompression. The ts and td were found to be linearly proportional to the square of the thickness above an aspect ratio of 3.7, which was consistent with the numerical simulations based on the solution of Fick's law. This finding could be used to predict the ts in a polymer without any measurement, depending on the sample size.

5.
Sensors (Basel) ; 19(14)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295953

RESUMEN

Paper-based sensors fabricated using the pencil-on-paper method are expected to find wide usage in many fields owing to their low cost and high reproducibility. Here, hydrogen (H2) detection was realized by applying palladium (Pd) nanoparticles (NPs) to electronic circuits printed on paper using a metal mask and a pencil. We confirmed that multilayered graphene was produced by the pencil, and then characterized Pd NPs were added to the pencil marks. To evaluate the gas-sensing ability of the sensor, its sensitivities and reaction rates in the presence and absence of H2 were measured. In addition, sensing tests performed over a wide range of H2 concentrations confirmed that the sensor had a detection limit as low as 1 ppm. Furthermore, the sensor reacted within approximately 50 s at all H2 concentrations tested. The recovery time of the sensor was 32 s at 1 ppm and 78 s at 1000 ppm. Sensing tests were also performed using Pd NPs of different sizes to elucidate the relationship between the sensing rate and catalyst size. The experimental results confirmed the possibility of fabricating paper-based gas sensors with a superior sensing capability and response rate.

6.
Sensors (Basel) ; 18(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513867

RESUMEN

The possibility of exposure to botulinum neurotoxin (BoNT), a powerful and potential bioterrorism agent, is considered to be ever increasing. The current gold-standard assay, live-mouse lethality, exhibits high sensitivity but has limitations including long assay times, whereas other assays evince rapidity but lack factors such as real-time monitoring or portability. In this study, we aimed to devise a novel detection system that could detect BoNT at below-nanomolar concentrations in the form of a stretchable biosensor. We used a field-effect transistor with a p-type channel and electrodes, along with a channel comprising aligned carbon nanotube layers to detect the type E light chain of BoNT (BoNT/E-Lc). The detection of BoNT/E-Lc entailed observing the cleavage of a unique peptide and the specific bonding between BoNT/E-Lc and antibody BoNT/E-Lc (Anti-BoNT/E-Lc). The unique peptide was cleaved by 60 pM BoNT/E-Lc; notably, 52 fM BoNT/E-Lc was detected within 1 min in the device with the antibody in the bent state. These results demonstrated that an all-carbon nanotube-based device (all-CNT-based device) could be produced without a complicated fabrication process and could be used as a biosensor with high sensitivity, suggesting its potential development as a wearable BoNT biosensor.


Asunto(s)
Técnicas Biosensibles , Toxinas Botulínicas/aislamiento & purificación , Péptidos/aislamiento & purificación , Animales , Anticuerpos Monoclonales/química , Bioterrorismo/tendencias , Toxinas Botulínicas/química , Toxinas Botulínicas/toxicidad , Humanos , Ratones , Nanotubos de Carbono/química , Péptidos/química
7.
Nano Converg ; 3(1): 29, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28191439

RESUMEN

Superior nanomaterials have been developed and applied to many fields, and improved characteristic of nanomaterials have been studied. Measurement of the mechanical properties for nanomaterials is important to ensure the reliability and predict the service life times of products containing nanomaterials. However, it is challenging to measure the mechanical properties of nanomaterials due to their very small dimensions. Moreover, macro-scale measurement systems are not suitable for use with nanomaterials. Therefore, various methods have been developed and used to in an effort to measure the mechanical properties of nanomaterials. This paper presents a review of various evaluation systems and the measurement methods which are used to determine the mechanical properties of carbon nanotube (CNT) and carbon nanofiber (CNF), representatively. In addition, we measured the tensile strength and elastic modulus of the CNT and CNF in the scanning electron microscope (SEM) installed the nano-manipulator and the force sensor and this measurement system and results would be introduced in detail.

8.
J Nanosci Nanotechnol ; 15(11): 8711-5, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26726581

RESUMEN

Carbon nanofibers (CNFs) are good candidates for nano-system applications because they have the excellent mechanical and the electrical properties. The mechanical and electrical properties of a single CNF were measured. A tensile test and a measurement of the electrical resistance of CNFs during elongation were performed inside a scanning electron microscope. We confirmed that the CNFs used in this experiment consisted of a polycrystalline structure and an amorphous phase by a result of Raman. Additionally, we observed that the crystal structure in nanofibers exhibits brittle fracture behavior and the amorphous phase make them relatively ductile. The elastic moduli of the CNFs were 9.57 to 13.6 GPa in the elastic section. The electrical resistance of the CNFs exhibited unusual behavior during elongation. The electrical resistance of the CNFs exhibited stable resistance increase like as the tensile results in the initial region. But the electrical resistance exhibited generally irregular increase after initial region because of the polycrystalline structure and amorphous phase. The strain sensitivity of the CNFs exhibited a much lower value.

9.
J Nanosci Nanotechnol ; 15(11): 9071-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26726645

RESUMEN

Large-scale graphene or carbon nanotube (CNT) films are good candidates for transparent flexible electrodes, and the strong interest in graphene and CNT films has motivated the scalable production of a good-conductivity and an optically transmitting film. Unzipping techniques for converting CNTs to graphene are especially worthy of notice. Here, we performed nanotube unzipping of the spun multi-walled carbon nanotubes (MWCNTs) to produce networked graphene nanoribbon (GNR) sheet films using an 02 plasma etching method, after which we produced the spun MWCNT film by continually pulling MWCNTs down from the vertical well aligned MWCNTs on the substrate. The electrical resistance was slightly decreased and the optical transmittance was significantly increased when the spun MWCNT films were etched for 20 min by O2 plasma of 100 mA. Plasma etching for the optimized time, which does not change the thickness of the spun MWCNT films, improved the electrical resistance and the optical transmittance.

10.
Clin Exp Med ; 14(3): 261-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23700158

RESUMEN

Apocynin is known to suppress the production of reactive oxygen species (ROS) by inhibiting NADPH oxidases, specifically phagocytic NADPH oxidase (PHOX or NOX2). Given the pro-inflammatory effects of ROS, apocynin has been studied extensively for its use as a therapeutic agent in various disease models. While the effects of apocynin on neutrophils and monocytes have been investigated, it remains to be elucidated whether apocynin modulates the effector function of T cells. In the present study, we examined the effect of apocynin on CD8(+) T cells and further investigated its mechanism of action. We found that apocynin directly inhibited the production of pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL-2 in anti-CD3/anti-CD28-stimulated CD8(+) T cells. The action of apocynin was upstream of the protein kinase C and calcium signaling in the T cell receptor signaling pathway because apocynin did not inhibit cytokine production in phorbol 12-myristate 13-acetate/ionomycin-stimulated CD8(+) T cells. Electrophoretic mobility shift assays revealed that apocynin attenuated anti-CD3/anti-CD28-induced NF-κB activation in CD8(+) T cells. In the experiments with NOX2-deficient mice, we demonstrated that apocynin inhibited TNF-α production of CD8(+) T cells in a NOX2-independent manner. Taken together, we demonstrated that apocynin, a well-known NOX2 inhibitor, suppressed the cytokine production of CD8(+) T cells. We also showed the NOX2-independent action of apocynin in the inhibition of TNF-α production in CD8(+) T cells.


Asunto(s)
Acetofenonas/metabolismo , Antiinflamatorios no Esteroideos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Animales , Ratones Endogámicos C57BL
11.
ACS Nano ; 8(1): 634-41, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24299655

RESUMEN

The synthesis of pure whitlockite (WH: Ca18Mg2(HPO4)2(PO4)12) has remained a challenge even though it is the second most abundant inorganic in living bone. Although a few reports about the precipitation of WH in heterogeneous phases have been published, to date, synthesizing WH without utilizing any effects of a buffer or various other ions remains difficult. Thus, the related research fields have encountered difficulties and have not been fully developed. Here, we developed a large-scale synthesis method for pure WH nanoparticles in a ternary Ca(OH)2-Mg(OH)2-H3PO4 system based on a systematic approach. We used excess Mg(2+) to impede the growth of hydroxyapatite (HAP: Ca10(PO4)6(OH)2) and the formation of other kinetically favored calcium phosphate intermediate phases. In addition, we designed and investigated the synthesis conditions of WH under the acidic pH conditions required to dissolve HAP, which is the most thermodynamically stable phase above pH 4.2, and to incorporate the HPO4(2-) group into the chemical structure of WH. We demonstrated that pure WH nanoparticles can be precipitated under Mg(2+)-rich and acidic pH conditions without any intermediate phases. Interestingly, this synthesized nano-WH showed comparable biocompatibility with HAP. Our methodology for determining the synthesis conditions of WH could provide a new platform for investigating other important precipitants in aqueous systems.


Asunto(s)
Materiales Biocompatibles , Huesos/metabolismo , Fosfatos de Calcio/metabolismo , Nanopartículas , Células Cultivadas , Durapatita/química , Humanos , Microscopía Electrónica de Transmisión , Termodinámica , Difracción de Rayos X
12.
J Nanosci Nanotechnol ; 12(4): 3242-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22849097

RESUMEN

Iron-catalyzed spin-capable multi-walled carbon nanotubes (MWCNTs) were grown on a SiO2 wafer by chemical vapor deposition, which was carried out at 780 degrees C using C2H2 and H2 gases. We fabricated a flexible transparent film using the spun MWCNTs. The MWCNT sheets were produced by being continuously pulled out from well-aligned MWCNTs grown on a substrate. The MWCNT sheet films were manufactured by simply carrying out direct coating on a flexible film or glass. The thickness of the sheet film decreased remarkably when alcohol was sprayed on the surface of the sheet. The alcohol spraying increased the transmittance and decreased the electrical resistance of the MWCNT sheet films. The sheets obtained after alcohol spraying had a resistance of -699 omega and a transmittance of 81%-85%. The MWCNT sheet films were heated by applying direct current. The transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, we tested the field emission of the sheet films. The sheet films showed a turn-on voltage of -1.45 V/microm during field emission.

13.
J Nanosci Nanotechnol ; 11(1): 721-4, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21446531

RESUMEN

The bending and tensile tests of the ZnO nanorods were carried out by controlling a force sensor and a nano-manipulator inside a scanning electron microscope (SEM). The force sensor was mounted on the nano-manipulator, was controlled with the nano-manipulate. The load response during the mechanical test for the ZnO nanorod was obtained by using the force sensor which is formed as a cantilever. The elastic modulus of the ZnO nanorods after the tensile and bending tests were calculated and compared. The elastic modulus of ZnO nanorods was depended on a size and an aspect ratio of the ZnO nanorods. The difference of the elastic modulus of ZnO nanorods was obtained with a difference of test methods performed along crystal facets direction of the ZnO nanorods. The average elastic modulus calculated after the tensile test was approximately 57.15 GPa. In case of the bending test, the average elastic modulus was approximately 29.37 GPa.

14.
Nanotechnology ; 19(6): 065703, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-21730710

RESUMEN

The tensile behavior of single-walled nanotubes (SWNTs) having two defects (vacancy or Stone-Wales) positioned next to each other was simulated in this study to investigate the influence of the spatial arrangement of defects on the mechanical properties. The simulations were performed using classical molecular dynamics (MD) at the atomic scale. Two neighboring vacancy defects reduced the failure strength as much as 46% and the failure strain as much as 80% in comparison with those of pristine SWNTs, while two neighboring Stone-Wales defects reduced them as much as 34% and 70% respectively. SWNTs having two defects in the loading (axial) direction showed higher failure strength than SWNTs with defects perpendicular to the loading direction. For both types of defect, the closer the defects, the weaker the SWNTs. As result, the defect arrangement in the SWNT structure must be one of the key factors in determining its mechanical properties, as well as the population of defects.

15.
J Phys Chem B ; 109(2): 968-72, 2005 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16866466

RESUMEN

A combined structural refinement of Bi3.5La0.5Ti3O12 against both neutron and X-ray diffraction data was performed at 298 K on the basis of the Raman study. The upshift of Raman peaks suggested that the substitution sites of La atoms in Bi3.5La0.5Ti3O12 were only the Bi sites in the perovskite units. Of the two crystal structural models (orthorhombic and monoclinic systems) considered for the crystal structural system of Bi3.5La0.5Ti3O12, the weighted R factor, Rwp, and goodness-of-fit indicator, S (=Rwp/Re), of the monoclinic system were lower than those of the orthorhombic one. The final Rwp and S values based on the monoclinic system were 7.04% (6.34 and 7.76% for the neutron data and the X-ray data, respectively) and 1.45, respectively. The lattice parameters obtained from the combined structural refinement were a = 5.4321(1) A, b = 5.4161(1) A, and c = 32.8614(3) A. The beta angle was 89.95(4) degrees . Spontaneous polarizations calculated from the refined structural parameters were 27.0 microC/cm2 for the monoclinic system and 1.8 microC/cm2 for the orthorhombic one.

16.
Ultrasonics ; 41(7): 543-9, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12919690

RESUMEN

The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K(IC)) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the K(IC) consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K(IC) using the K(IC) versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel.


Asunto(s)
Ensayo de Materiales , Acero , Ultrasonido , Falla de Equipo , Centrales Eléctricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...