Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 305, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942762

RESUMEN

This study assesses the neuroprotective potential of CPP-P1, a conjugate of an anti-apoptotic peptain-1 (P1) and a cell-penetrating peptide (CPP) in in vitro, in vivo, and ex vivo glaucoma models. Primary retinal ganglion cells (RGCs) were subjected to either neurotrophic factor (NF) deprivation for 48 h or endothelin-3 (ET-3) treatment for 24 h and received either CPP-P1 or vehicle. RGC survival was analyzed using a Live/Dead assay. Axotomized human retinal explants were treated with CPP-P1 or vehicle for seven days, stained with RGC marker RBPMS, and RGC survival was analyzed. Brown Norway (BN) rats with elevated intraocular pressure (IOP) received weekly intravitreal injections of CPP-P1 or vehicle for six weeks. RGC function was evaluated using a pattern electroretinogram (PERG). RGC and axonal damage were also assessed. RGCs from ocular hypertensive rats treated with CPP-P1 or vehicle for seven days were isolated for transcriptomic analysis. RGCs subjected to 48 h of NF deprivation were used for qPCR target confirmation. NF deprivation led to a significant loss of RGCs, which was markedly reduced by CPP-P1 treatment. CPP-P1 also decreased ET-3-mediated RGC death. In ex vivo human retinal explants, CPP-P1 decreased RGC loss. IOP elevation resulted in significant RGC loss in mid-peripheral and peripheral retinas compared to that in naive rats, which was significantly reduced by CPP-P1 treatment. PERG amplitude decline in IOP-elevated rats was mitigated by CPP-P1 treatment. Following IOP elevation in BN rats, the transcriptomic analysis showed over 6,000 differentially expressed genes in the CPP-P1 group compared to the vehicle-treated group. Upregulated pathways included CREB signaling and synaptogenesis. A significant increase in Creb1 mRNA and elevated phosphorylated Creb were observed in CPP-P1-treated RGCs. Our study showed that CPP-P1 is neuroprotective through CREB signaling enhancement in several settings that mimic glaucomatous conditions. The findings from this study are significant as they address the pressing need for the development of efficacious therapeutic strategies to maintain RGC viability and functionality associated with glaucoma.

2.
ACS Chem Biol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904252

RESUMEN

Lysine acetylation (AcK) is a prominent post-translational modification in eye lens crystallins. We have observed that AcK formation is preferred in some lysine residues over others in crystallins. In this study, we have investigated the role of thiols in such AcK formation. Upon incubation with acetyl-CoA (AcCoA), αA-Crystallin, which contains two cysteine residues, showed significantly higher levels of AcK than αB-Crystallin, which lacks cysteine residues. Incubation with thiol-rich γS-Crystallin resulted in higher AcK formation in αB-Crystallin from AcCoA. External free thiol (glutathione and N-acetyl cysteine) increased the AcK content in AcCoA-incubated αB-Crystallin. Reductive alkylation of cysteine residues significantly decreased (p < 0.001) the AcCoA-mediated AcK formation in αA-Crystallin. Introduction of cysteine residues within ∼5 Å of lysine residues (K92C, E99C, and V169C) in αB-Crystallin followed by incubation with AcCoA resulted in a 3.5-, 1.3- and 1.3-fold increase in the AcK levels when compared to wild-type αB-Crystallin, respectively. Together, these results suggested that AcK formation in α-Crystallin is promoted by the proximal cysteine residues and protein-free thiols through an S → N acetyl transfer mechanism.

3.
Proteomics Clin Appl ; : e202400018, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923810

RESUMEN

PURPOSE: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism. EXPERIMENTAL DESIGN: A novel extraction and LC-MS/MS approach was adapted to quantify sites of lysine acetylation from formalin-fixed paraffin-embedded (FFPE) kidney tissue and from patients with DKD and non-diabetic donors (n = 5 and n = 7, respectively). RESULTS: Analysis of FFPE tissues identified 840 total proteins, with 225 of those significantly changing in patients with DKD. Acetylomic analysis quantified 289 acetylated peptides, with 69 of those significantly changing. Pathways impacted in DKD patients revealed numerous metabolic pathways, specifically mitochondrial function, oxidative phosphorylation, and sirtuin signaling. Differential protein acetylation in DKD patients impacted sirtuin signaling, valine, leucine, and isoleucine degradation, lactate metabolism, oxidative phosphorylation, and ketogenesis. CONCLUSIONS AND CLINICAL RELEVANCE: A quantitative acetylomics platform was developed for protein biomarker discovery in formalin-fixed and paraffin-embedded biopsies of kidney transplant patients suffering from DKD.

4.
Aging Cell ; 22(4): e13797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36823285

RESUMEN

Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65-75 years) were incubated with aggrelyte-2 (500 µM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%-30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC-MS/MS results showed Nε -acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.


Asunto(s)
Cristalinas , Cristalino , Presbiopía , Humanos , Animales , Ratones , Anciano , Lisina/metabolismo , Presbiopía/metabolismo , Solubilidad , Cromatografía Liquida , Acetilación , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Cristalino/metabolismo , Cristalinas/análisis , Cristalinas/metabolismo , Agua/análisis , Agua/metabolismo , Disulfuros/análisis , Disulfuros/metabolismo
5.
Transl Vis Sci Technol ; 11(11): 8, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355386

RESUMEN

Purpose: Ocular hypertension is a significant risk factor for vision loss in glaucoma caused by the death of retinal ganglion cells (RGCs). We investigated whether small heat shock proteins (sHsps) expressed in RGCs protect those cells against ocular hypertension in mice. Methods: AAV2 vectors encoding genes for one of the following four human sHsps: HSPB1, HSPB4, HSPB5, or HSPB6 were constructed for RGC-specific expression. Ischemia/reperfusion was induced by elevating the intraocular pressure (IOP) to 120 mm Hg for one hour, followed by a rapid return to normal IOP. Microbeads (MB) were injected into the anterior chamber of mice to induce ocular hypertension. RGC death and glial activation were assessed by immunostaining for Brn3a, RBPMS, Iba1, and glial fibrillary acid protein in retinal flat mounts. RGC axonal defects were evaluated by anterograde transport of intravitreally injected cholera toxin-B. RGC function was assessed by pattern electroretinography. Results: Among the sHsps, HspB1 offered the best protection against RGC death from ischemia/reperfusion injury in the mouse retina. Intravitreal administration of AAV2-HSPB1 either two weeks before or one week after instituting ocular hypertension resulted in significant prevention of RGC loss. The MB-injected mice showed RGC axonal transportation defects, but AAV2-HSPB1 administration significantly inhibited this defect. AAV2-HSPB1 prevented glial activation caused by ocular hypertension. More importantly, a single injection of AAV2-HSPB1 protected RGCs long-term in MB-injected eyes. Conclusions: The administration of AAV2-HSPB1 inhibited RGC death and axonal transport defects and reduced glial activation in a mouse model of ocular hypertension. Translational Relevance: Our results suggested that the intravitreal delivery of AAV2-HSPB1 could be developed as a gene therapy to prevent vision loss on a long-term basis in glaucoma patients.


Asunto(s)
Glaucoma , Hipertensión Ocular , Humanos , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Transporte Axonal , Hipertensión Ocular/genética , Hipertensión Ocular/metabolismo , Glaucoma/genética , Glaucoma/prevención & control , Presión Intraocular , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
6.
Cell Death Dis ; 13(11): 958, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379926

RESUMEN

Ocular hypertension is a significant risk factor for vision loss in glaucoma due to the death of retinal ganglion cells (RGCs). This study investigated the effects of the antiapoptotic peptides peptain-1 and peptain-3a on RGC death in vitro in rat primary RGCs and in mouse models of ocular hypertension. Apoptosis was induced in primary rat RGCs by trophic factor deprivation for 48 h in the presence or absence of peptains. The effects of intravitreally injected peptains on RGC death were investigated in mice subjected to retinal ischemic/reperfusion (I/R) injury and elevated intraocular pressure (IOP). I/R injury was induced in mice by elevating the IOP to 120 mm Hg for 1 h, followed by rapid reperfusion. Ocular hypertension was induced in mice by injecting microbeads (MB) or silicone oil (SO) into the anterior chamber of the eye. Retinal flatmounts were immunostained with RGC and activated glial markers. Effects on anterograde axonal transport were determined by intravitreal injection of cholera toxin-B. Peptain-1 and peptain-3a inhibited neurotrophic factor deprivation-mediated RGC apoptosis by 29% and 35%, respectively. I/R injury caused 52% RGC loss, but peptain-1 and peptain-3a restricted RGC loss to 13% and 16%, respectively. MB and SO injections resulted in 31% and 36% loss in RGCs following 6 weeks and 4 weeks of IOP elevation, respectively. Peptain-1 and peptain-3a inhibited RGC death; the loss was only 4% and 12% in MB-injected eyes and 16% and 15% in SO-injected eyes, respectively. Anterograde transport was defective in eyes with ocular hypertension, but this defect was substantially ameliorated in peptain-injected eyes. Peptains suppressed ocular hypertension-mediated retinal glial activation. In summary, our results showed that peptains block RGC somal and axonal damage and neuroinflammation in animal models of glaucoma. We propose that peptains have the potential to be developed as therapeutics against neurodegeneration in glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Ratas , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Neuroprotección , Presión Intraocular , Hipertensión Ocular/complicaciones , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/metabolismo , Glaucoma/metabolismo , Modelos Animales de Enfermedad
7.
Front Mol Biosci ; 9: 860375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480891

RESUMEN

This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.

8.
Glycoconj J ; 38(3): 347-359, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33245448

RESUMEN

Proteins in the eye lens have negligible turnover and therefore progressively accumulate chemical modifications during aging. Carbonyls and oxidative stresses, which are intricately linked to one another, predominantly drive such modifications. Oxidative stress leads to the loss of glutathione (GSH) and ascorbate degradation; this in turn leads to the formation of highly reactive dicarbonyl compounds that react with proteins to form advanced glycation end products (AGEs). The formation of AGEs leads to the crosslinking and aggregation of proteins contributing to lens aging and cataract formation. To inhibit AGE formation, we developed a disulfide compound linking GSH diester and mercaptoethylguanidine, and we named it carboxitin. Bovine lens organ cultured with carboxitin showed higher levels of GSH and mercaptoethylguanidine in the lens nucleus. Carboxitin inhibited erythrulose-mediated mouse lens protein crosslinking, AGE formation and the formation of 3-deoxythreosone, a major ascorbate-derived AGE precursor in the human lens. Carboxitin inhibited the glycation-mediated increase in stiffness in organ-cultured mouse lenses measured using compressive mechanical strain. Delivery of carboxitin into the lens increases GSH levels, traps dicarbonyl compounds and inhibits AGE formation. These properties of carboxitin could be exploited to develop a therapy against the formation of AGEs and the increase in stiffness that causes presbyopia in aging lenses.


Asunto(s)
Glutatión/análogos & derivados , Glutatión/síntesis química , Cristalino/efectos de los fármacos , Animales , Bovinos , Productos Finales de Glicación Avanzada , Glicosilación , Cristalino/fisiología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Tetrosas/metabolismo , Células Tumorales Cultivadas
9.
J Biol Chem ; 295(17): 5701-5716, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32184356

RESUMEN

Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein-cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin-γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens-epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone-client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone-client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin-client complexes could contribute to lens aging and presbyopia.


Asunto(s)
Envejecimiento , Cristalino/metabolismo , Presbiopía/metabolismo , Cadena A de alfa-Cristalina/metabolismo , Adolescente , Adulto , Anciano , Productos Finales de Glicación Avanzada/análisis , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Humanos , Cristalino/química , Persona de Mediana Edad , Desnaturalización Proteica , Adulto Joven , Cadena A de alfa-Cristalina/química , gamma-Cristalinas/química , gamma-Cristalinas/metabolismo
10.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151061

RESUMEN

BACKGROUND: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. METHODS: We injected KYNA intravenously or intravitreally to mice. We generated a knockout mouse strain of kynurenine 3-monooxygenase (KMO), an enzyme in the kynurenine pathway that produces neurotoxic 3-hydroxykynurenine. To test the effect of mild hyperglycemia on RGC protection, we used streptozotocin (STZ) induced diabetic mice. Retinal I/R injury was induced by increasing intraocular pressure for 60 min followed by reperfusion and RGC numbers were counted in the retinal flat mounts. RESULTS: Intravenous or intravitreal administration of KYNA protected RGCs against I/R injury. The I/R injury caused a greater loss of RGCs in wild type than in KMO knockout mice. KMO knockout mice had mildly higher levels of fasting blood glucose than wild type mice. Diabetic mice showed significantly lower loss of RGCs when compared with non-diabetic mice subjected to I/R injury. CONCLUSION: Together, our study suggests that the absence of KMO protects RGCs against I/R injury, through mechanisms that likely involve higher levels of KYNA and glucose.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Modelos Animales de Enfermedad , Glaucoma/prevención & control , Ácido Quinurénico/farmacología , Quinurenina 3-Monooxigenasa/fisiología , Daño por Reperfusión/complicaciones , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Glaucoma/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
11.
Exp Eye Res ; 190: 107864, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678036

RESUMEN

Acylated lysine residues represent major chemical modifications in proteins. We investigated the malonylation and propionylation of lysine residues (MalK, PropK) in the proteins of aging human lenses. Western blot results showed that the two modifications are present in human lens proteins. Liquid chromatography-mass spectrometry (LC-MS/MS) results showed 4-18 and 4-32 pmol/mg protein of MalK and PropK, respectively, in human lens proteins with no apparent changes related to aging. Mass spectrometry results revealed that MalK- and PropK-modified lysine residues are present in all major crystallins, other cytosolic proteins, and membrane and cytoskeletal proteins of the lens. Several mitochondrial and cytosolic proteins in cultured human lens epithelial cells showed MalK and PropK modifications. Sirtuin 3 (SIRT3) and sirtuin 5 (SIRT5) were present in human lens epithelial and fiber cells. Moreover, lens epithelial cell lysate deacylated propionylated and malonylated lysozyme. The absence of SIRT3 and SIRT5 led to higher PropK and MalK levels in mouse lenses. Together, these data suggest that MalK and PropK are widespread modifications in lens and SIRT3 and SIRT5 could regulate their levels in lens epithelial cells.


Asunto(s)
Cristalinas/metabolismo , Cristalino/metabolismo , Lisina/metabolismo , Malonatos/metabolismo , Propionatos/metabolismo , Sirtuina 3/metabolismo , Sirtuinas/metabolismo , Envejecimiento/fisiología , Animales , Western Blotting , Cromatografía Liquida , Proteínas del Citoesqueleto/metabolismo , Citosol/metabolismo , Células Epiteliales/metabolismo , Humanos , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Mitocondriales/metabolismo , Técnicas de Cultivo de Órganos , Adhesión en Parafina , Espectrometría de Masas en Tándem
13.
Cell Death Discov ; 5: 112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285855

RESUMEN

Axonal degeneration and death of retinal ganglion cells (RGCs) are the primary causes of vision loss in glaucoma. In this study, we evaluated the efficacy of a peptide (peptain-1) that exhibits robust chaperone and anti-apoptotic activities against RGC loss in two rodent models and in cultured RGCs. In cultures of rat primary RGCs and in rat retinal explants peptain-1 significantly decreased hypoxia-induced RGC loss when compared to a scrambled peptide. Intraperitoneally (i.p.) injected peptain-1 (conjugated to a Cy7 fluorophore) was detected in the retina indicative of its ability to cross the blood-retinal barrier. Peptain-1 treatment inhibited RGC loss in the retina of mice subjected to ischemia/reperfusion (I/R) injury. A reduction in anterograde axonal transport was also ameliorated by peptain-1 treatment in the retina of I/R injured mice. Furthermore, i.p. injections of peptain-1 significantly reduced RGC death and axonal loss and partially restored retinal mitochondrial cytochrome c oxidase subunit 6b2 (COX 6b2) levels in rats subjected to five weeks of elevated intraocular pressure. We conclude that i.p. injected peptain-1 gains access to the retina and protects both RGC somas and axons against the injury caused by I/R and ocular hypertension. Based on these findings, peptain-1 has the potential to be developed as an efficacious neuroprotective agent for the treatment of glaucoma.

14.
Exp Eye Res ; 182: 1-9, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30849386

RESUMEN

Acetylation of lysine residues occurs in lens proteins. Previous studies have shown an improvement in the chaperone activity of αA-crystallin upon acetylation. Sirtuins are NAD+-dependent enzymes that can deacylate proteins. The roles of sirtuins in regulating the acetylation of lens proteins and their impacts on the function of α-crystallin are not known. Here, we detected sirtuin activity in mouse lenses, and SIRT3 and SIRT5 were present primarily in the mitochondria of cultured primary mouse lens epithelial cells. Western blotting showed higher levels of protein acetylation in the lenses of SIRT3 KO and SIRT5 KO mice than in lenses of WT mice. Mass spectrometry analyses revealed a greater number of acetylated lysine residues in α-crystallin isolated from the SIRT3 and SIRT5 KO lenses than from WT lenses. α-Crystallin isolated from SIRT3 and SIRT5 KO lenses displayed a higher surface hydrophobicity and higher chaperone activity than the protein isolated from WT lenses. Thus, SIRTs regulate the acetylation levels of crystallins in mouse lenses, and acetylation in lenses enhances the chaperone activity of α-crystallin.


Asunto(s)
Catarata/genética , Regulación de la Expresión Génica , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Sirtuina 3/genética , Sirtuinas/genética , alfa-Cristalinas/genética , Acetilación , Animales , Western Blotting , Catarata/metabolismo , Modelos Animales de Enfermedad , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN/genética , Sirtuina 3/biosíntesis , Sirtuinas/biosíntesis , alfa-Cristalinas/metabolismo
15.
Biochemistry ; 58(9): 1260-1274, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30758948

RESUMEN

Acylation of lysine residues is a common post-translational modification of cellular proteins. Here, we show that lysine succinylation, a type of acylation, occurs in human lens proteins. All of the major crystallins exhibited Nε-succinyllysine (SuccK) residues. Quantification of SuccK in human lens proteins (from donors between the ages of 20 and 73 years) by LC-MS/MS showed a range between 1.2 and 14.3 pmol/mg lens protein. The total SuccK levels were slightly reduced in aged lenses (age > 60 years) relative to young lenses (age < 30 years). Immunohistochemical analyses revealed that SuccK was present in epithelium and fiber cells. Western blotting and immunoprecipitation experiments revealed that SuccK is particularly prominent in αB-crystallin, and succinylation in vitro revealed that αB-crystallin is more prone to succinylation than αA-crystallin. Mass spectrometric analyses showed succinylation at K72, K90, K92, K166, K175, and potentially K174 in human lens αB-crystallin. We detected succinylation at K72, K82, K90, K92, K103, K121, K150, K166, K175, and potentially K174 by mass spectrometry in mildly succinylated αB-crystallin. Mild succinylation improved the chaperone activity of αB-crystallin along with minor perturbation in tertiary and quaternary structure of the protein. These observations imply that succinylation is beneficial to αB-crystallin by improving its chaperone activity with only mild conformational alterations.


Asunto(s)
Cristalino/metabolismo , Lisina/análisis , Lisina/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Adulto , Factores de Edad , Anciano , Cromatografía Liquida , Dicroismo Circular , Cristalinas/metabolismo , Mutación con Ganancia de Función , Humanos , Cristalino/química , Persona de Mediana Edad , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformación Proteica , Succinatos/metabolismo , Espectrometría de Masas en Tándem , Cadena B de alfa-Cristalina/química , Cadena B de alfa-Cristalina/genética
16.
J Immunol Methods ; 467: 37-47, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30738041

RESUMEN

αB-Crystallin is a member of the small heat shock protein family. It is a molecular chaperone and an anti-apoptotic protein. Previous studies have shown that the peptide (73DRFSVNLDVKHFSPEELKVKV93, hereafter referred to as peptain-1) from the core domain of αB-crystallin exhibits both chaperone and anti-apoptotic properties similar to the parent protein. We developed a mouse monoclonal antibody against peptain-1 with the aim of blocking the functions of αB-crystallin. The antibody reacted with peptain-1, it did not react with the chaperone peptide of αA-crystallin. The antibody strongly reacted with human recombinant αB-crystallin but weakly with Hsp20; it did not react with αA-crystallin or Hsp27. The antibody specifically reacted with αB-crystallin in human and mouse lens proteins but not with αA-crystallin. The antibody reacted with αB-crystallin in human lens epithelial cells, human retinal endothelial cells, and with peptain-1 in peptain-1-transduced cells. Unlike the commercial antibodies against αB-crystallin, the antibody against peptain-1 inhibited the chaperone and anti-apoptotic activities of peptain-1. The antibody might find use in inhibiting αB-crystallin's chaperone and anti-apoptotic activities in diseases where αB-crystallin is a causative or contributing factor.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Apoptosis/efectos de los fármacos , Cadena B de alfa-Cristalina/antagonistas & inhibidores , Animales , Apoptosis/inmunología , Ratones , Ratones Endogámicos BALB C , Cadena B de alfa-Cristalina/inmunología
17.
Invest Ophthalmol Vis Sci ; 59(5): 2042-2053, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677366

RESUMEN

Purpose: Loss of retinal capillary endothelial cells and pericytes through apoptosis is an early event in diabetic retinopathy (DR). Inflammatory pathways play a role in early DR, yet the biochemical mechanisms are poorly understood. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), an inflammatory cytokine-inducible enzyme, on retinal endothelial apoptosis and capillary degeneration in the diabetic retina. Methods: IDO was detected in human and mouse retinas by immunohistochemistry or Western blotting. Interferon-γ (IFN-γ) levels were measured by ELISA. IDO levels were measured in human retinal capillary endothelial cells (HREC) cultured in the presence of IFN-γ ± 25 mM D-glucose. Reactive oxygen species (ROS) were measured using CM-H2DCFDA dye and apoptosis was measured by cleaved caspase-3. The role of IDO in DR was determined in IDO knockout (IDO-/-) mice with streptozotocin-induced diabetes. Results: The IDO and IFN-γ levels were higher in human diabetic retinas with retinopathy relative to nondiabetic retinas. Immunohistochemical data showed that IDO is present in capillary endothelial cells. IFN-γ upregulated the IDO and ROS levels in HREC. The blockade of either IDO or kynurenine monooxygenase led to inhibition of ROS in HREC. Apoptosis through this pathway was inhibited by an ROS scavenger, TEMPOL. Capillary degeneration was significantly reduced in diabetic IDO-/- mice compared to diabetic wild-type mice. Conclusions: The results suggest that the kynurenine pathway plays an important role in the inflammatory damage in the diabetic retina and could be a new therapeutic target for the treatment of DR.


Asunto(s)
Retinopatía Diabética/complicaciones , Células Endoteliales/patología , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Degeneración Retiniana/prevención & control , Vasos Retinianos/patología , Anciano , Animales , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Electroforesis en Gel de Poliacrilamida , Células Endoteliales/enzimología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Degeneración Retiniana/enzimología , Vasos Retinianos/enzimología
18.
J Cell Biochem ; 119(8): 6814-6827, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29693273

RESUMEN

Human lens epithelial cells (HLE) undergo mesenchymal transition and become fibrotic during posterior capsule opacification (PCO), which is a frequent complication after cataract surgery. TGF-ß2 has been implicated in this fibrosis. Previous studies have focused on the role of hypoxia-inducible factor-1α (HIF-1α) in fibrotic diseases, but the role of HIF-1α in the TGF-ß2-mediated fibrosis in HLE is not known. TGF-ß2 treatment (10 ng/mL, 48 h) increased the HIF-1α levels along with the EMT markers in cultured human lens epithelial cells (FHL124 cells). The increase in HIF-1α corresponded to an increase in VEGF-A in the culture medium. However, exogenous addition of VEGF-A (up to 10 ng/mL) did not alter the EMT marker levels in HLE. Addition of a prolyl hydroxylase inhibitor, dimethyloxalylglycine (DMOG, up to 10 µM), enhanced the levels of HIF-1α, and secreted VEGF-A but did not alter the EMT marker levels. However, treatment of cells with a HIF-1α translational inhibitor, KC7F2, significantly reduced the TGF-ß2-mediated EMT response. This was accompanied by a reduction in the ERK phosphorylation and nuclear translocation of Snail and Slug. Together, these data suggest that HIF-1α is important for the TGF-ß2-mediated EMT of human lens epithelial cells.


Asunto(s)
Opacificación Capsular/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Proteínas del Ojo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Crecimiento Transformador beta2/metabolismo , Opacificación Capsular/genética , Opacificación Capsular/patología , Línea Celular , Células Epiteliales/patología , Proteínas del Ojo/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Cristalino , Factor de Crecimiento Transformador beta2/genética
19.
Biochem J ; 473(10): 1455-69, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26987815

RESUMEN

Transforming growth factor (TGF)-ß2-mediated pathways play a major role in the epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) during secondary cataract formation, which is also known as posterior capsule opacification (PCO). Although αB-crystallin is a major protein in LEC, its role in the EMT remains unknown. In a human LEC line (FHL124), TGF-ß2 treatment resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was associated with nuclear localization of αB-crystallin, phosphorylated Smad2 (pSmad2) (S245/250/255), pSmad3 (S423/425), Smad4 and Snail and the binding of αB-crystallin to these transcription factors, all of which were reduced by the down-regulation of αB-crystallin. Expression of the functionally defective R120G mutant of αB-crystallin reduced TGF-ß2-induced EMT in LECs of αB-crystallin knockout (KO) mice. Treatment of bovine lens epithelial explants and mouse LEC with TGF-ß2 resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was accompanied by increase in phosphorylation of p44/42 mitogen-activated protein kinases (MAPK) (T202/Y204), p38 MAPK (T180/Y182), protein kinase B (Akt) (S473) and Smad2 when compared with untreated cells. These changes were significantly reduced in αB-crystallin depleted or knocked out LEC. The removal of the fibre cell mass from the lens of wild-type (WT) mice resulted in the up-regulation of EMT-associated genes in the capsule-adherent epithelial cells, which was reduced in the αB-crystallin KO mice. Together, our data show that αB-crystallin plays a central role in the TGF-ß2-induced EMT of LEC. αB-Crystallin could be targeted to prevent PCO and pathological fibrosis in other tissues.


Asunto(s)
Cristalinas/metabolismo , Células Epiteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Cristalino/citología , Factor de Crecimiento Transformador beta2/farmacología , Animales , Bovinos , Línea Celular , Cristalinas/genética , Transición Epitelial-Mesenquimal/genética , Células HeLa , Humanos , Ratones , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo
20.
Biochim Biophys Acta ; 1860(1 Pt B): 252-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25840354

RESUMEN

BACKGROUND: The findings that α-crystallins are multi-functional proteins with diverse biological functions have generated considerable interest in understanding their role in health and disease. Recent studies have shown that chaperone peptides of α-crystallin could be delivered into cultured cells and in experimental animals with beneficial effects against protein aggregation, oxidation, inflammation and apoptosis. SCOPE OF REVIEW: In this review, we will summarize the latest developments on the therapeutic potential of α-crystallins and their functional peptides. MAJOR CONCLUSIONS: α-Crystallins and their functional peptides have shown significant favorable effects against several diseases. Their targeted delivery to tissues would be of great therapeutic benefit. However, α-crystallins can also function as disease-causing proteins. These seemingly contradictory functions must be carefully considered prior to their therapeutic use. GENERAL SIGNIFICANCE: αA and αB-Crystallin are members of the small heat shock protein family. These proteins exhibit molecular chaperone and anti-apoptotic activities. The core crystallin domain within these proteins is largely responsible for these prosperities. Recent studies have identified peptides within the crystallin domain of both α- and αB-crystallins with remarkable chaperone and anti-apoptotic activities. Administration of α-crystallin or their functional peptides has shown substantial inhibition of pathologies in several diseases. However, α-crystallins have been shown to promote disease-causing pathways. These two sides of the proteins are discussed in this review. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Oftalmopatías/tratamiento farmacológico , Péptidos/uso terapéutico , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Cristalinas/química , Animales , Antioxidantes/uso terapéutico , Oftalmopatías/patología , Chaperonas Moleculares/uso terapéutico , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...