Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 9056, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641513

RESUMEN

Given the massive use of facemasks (FMs) during the covid-19 pandemic, concerns have been raised regarding the effect of FMs wearing on overall health. This study aimed at evaluating the effect of surgical FM on brain neuro-electrical activity. Electroencephalography (EEG) background frequency (BGF) and background amplitude (BGA) was performed on 30 volunteers before (baseline), during and after wearing a FM for 60 min. Measurements were done during normal ventilation, hyperventilation and post-hyperventilation (PHVR). Blood gas levels were assessed at baseline and after FM use. EEG analysis concerning baseline (without FM) (BGA), was 47.69 ± 18.60 µV, wearing FM, BGA was 48.45 ± 17.79 µV, post FM use BGA was 48.08 ± 18.30 µV. There were no statistically significant differences between baseline BGA and BGA under FM and post FM. BGF, Baseline data were 10.27 ± 0.79, FM use 10.30 ± 0.76 and post FM use was 10.33 ± 0.76. There were no statistically significant differences between baseline BGF and BGF under FM and post FM. Venous blood gases, and peripheral oxygen saturation were not significantly affected by FM use. Short-term use of FM in young healthy individuals has no significant alteration impact on brain's neuro-electrical activity.


Asunto(s)
COVID-19 , Máscaras , Encéfalo , COVID-19/prevención & control , Humanos , Hiperventilación , Pandemias
2.
PLoS One ; 17(4): e0266179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35446871

RESUMEN

Mesenchymal stromal cells (MSCs) can be utilized clinically for treatment of conditions that result from excessive inflammation. In a pro-inflammatory environment, MSCs adopt an anti-inflammatory phenotype resulting in immunomodulation. A sub-type of MSCs referred to as "marrow-isolated adult multilineage inducible" (MIAMI) cells, which were isolated from bone marrow, were utilized to show that the addition of autophagy modulators, tamoxifen (TX) or chloroquine (CQ), can alter how MIAMI cells respond to IFNγ exposure in vitro resulting in an increased immunoregulatory capacity of the MIAMI cells. Molecularly, it was also shown that TX and CQ each alter both the levels of immunomodulatory genes and microRNAs which target such genes. However, the role of other non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs) in regulating the response of MSCs to inflammation has been poorly studied. Here, we utilized transcriptomics and data mining to analyze the putative roles of various differentially regulated lncRNAs in MIAMI cells exposed to IFNγ with (or without) TX or CQ. The aim of this study was to investigate how the addition of TX and CQ alters lncRNA levels and evaluate how such changes could alter previously observed TX- and CQ-driven changes to the immunomodulatory properties of MIAMI cells. Data analysis revealed 693 long intergenic non-coding RNAS (lincRNAs), 480 pseudogenes, and 642 antisense RNAs that were differentially regulated with IFNγ, IFNγ+TX and IFNγ+CQ treatments. Further analysis of these RNA species based on the existing literature data revealed 6 antisense RNAs, 2 pseudogenes, and 5 lincRNAs that have the potential to modulate MIAMI cell's response to IFNγ treatment. Functional analysis of these genomic species based on current literature linking inflammatory response and ncRNAs indicated their potential for regulation of several key pro- and anti-inflammatory responses, including NFκB signaling, cytokine secretion and auto-immune responses. Overall, this work found potential involvement of multiple pro-and anti-inflammatory pathways and molecules in modulating MIAMI cells' response to inflammation.


Asunto(s)
ARN Largo no Codificante , Autofagia , Cloroquina/farmacología , Humanos , Inflamación/genética , Interferón gamma/farmacología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...