Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 6(10): 4372-4382, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37791981

RESUMEN

Lipid droplets (LDs) are dynamic complex organelles involved in various physiological processes, and their number and activity are linked to multiple diseases, including cancer. In this study, we have developed LD-specific near-infrared (NIR) light-responsive nano-drug delivery systems (DDSs) based on chalcone derivatives for cancer treatment. The reported nano-DDSs localized inside the cancer microenvironment of LDs, and upon exposure to light, they delivered the anticancer drug valproic acid in a spatiotemporally controlled manner. The developed systems, namely, 2'-hydroxyacetophenone-dimethylaminobenzaldehyde-valproic (HA-DAB-VPA) and 2'-hydroxyacetophenone-diphenylaminobenzaldehyde-valproic (HA-DPB-VPA) ester conjugates, required only two simple synthetic steps. Our reported DDSs exhibited interesting properties such as excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) phenomena, which provided advantages such as AIE-initiated photorelease and ESIPT-enhanced rate of photorelease upon exposure to one- or two-photon light. Further, colocalization studies of the nano-DDSs by employing two cancerous cell lines (MCF-7 cell line and CT-26 cell line) and one normal cell line (HEK cell line) revealed LD concentration-dependent enhanced fluorescence intensity. Furthermore, systematic investigations of both the nano-DDSs in the presence and absence of oleic acid inside the cells revealed that nano-DDS HA-DPB-VPA accumulated more selectively in the LDs. This unique selectivity by the nano-DDS HA-DPB-VPA toward the LDs is due to the hydrophobic nature of the diphenylaminobenzaldehyde (mimicking the LD core), which significantly leads to the aggregation and ESIPT (at 90% volume of fw, ΦF = 20.4% and in oleic acid ΦF = 24.6%), respectively. Significantly, we used this as a light-triggered anticancer drug delivery model to take advantage of the high selectivity and accumulation of the nano-DDS HA-DPB-VPA inside the LDs. Hence, these findings give a prototype for designing drug delivery models for monitoring LD-related intracellular activities and significantly triggering the release of LD-specific drugs in the biological field.


Asunto(s)
Antineoplásicos , Gotas Lipídicas , Gotas Lipídicas/química , Ácido Oléico/análisis , Antineoplásicos/química , Sistemas de Liberación de Medicamentos
2.
J Med Chem ; 66(6): 3732-3745, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36913722

RESUMEN

Targeted release of bioactive molecules for therapeutic purposes is a key area in the biomedical field that is growing quickly, where bioactive molecules are released passively or actively from drug delivery systems (DDSs) or bioactive donors. In the past decade, researchers have identified light as one of the prime stimuli that can implement the efficient spatiotemporally targeted delivery of drugs or gaseous molecules with minimal cytotoxicity and a real-time monitoring ability. This perspective emphasizes recent advances in the photophysical properties of ESIPT- (excited-state intramolecular proton transfer), AIE- (aggregation-induced emission), and AIE + ESIPT-attributed light-activated delivery systems or donors. The three major sections of this perspective describe the distinctive features of DDSs and donors concerning their design, synthesis, photophysical and photochemical properties, and in vitro and in vivo studies demonstrating their relevance as carrier molecules for releasing cancer drugs and gaseous molecules in the biological system.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Protones
3.
ACS Appl Bio Mater ; 5(3): 1202-1209, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35148052

RESUMEN

Developing green or red light-activated drug delivery systems (DDSs) for cancer treatment is highly desirable. Herein, we have reported a green light-responsive single component-based organic fluorescence nano-DDS by simply anchoring 2-hydroxy-6-naphthacyl (phototrigger) on both sides of the 1,5-diaminonaphthalene (DAN) chromophore. This green light (λ ≥ 500 nm)-activated DDS released two equivalents of the anticancer drug (valproic acid) in a spatio-temporally controlled manner. Our photoresponsive DDS [DAN-bis(HO-Naph-VPA)] exhibited interesting properties such as excited-state intramolecular proton transfer (ESIPT) accompanied with aggregation-induced emission (AIE) phenomena. AIE initiated the photorelease, and ESIPT enhanced the rate of the photorelease. Further, in vitro studies revealed that our green light-activated nano-DDS exhibited good cytocompatibility, excellent cellular internalization, and effective cancer cell killing ability.


Asunto(s)
Antineoplásicos , Sistema de Administración de Fármacos con Nanopartículas , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Fluorescencia , Protones
4.
FEBS J ; 289(13): 3770-3788, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35066976

RESUMEN

The bacterial heterodimeric ATP-binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug-resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide-binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug-mimetic azido-ethidium. Surprisingly, our analyses of azido-ethidium-labelled PatAB peptides point to ethidium binding in the PatA nucleotide-binding domain, with the azido moiety crosslinked to residue Q521 in the H-like loop of the degenerate nucleotide-binding site. Investigation into this compound and residue's role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium-dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium-like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non-competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide-binding domains.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Streptococcus pneumoniae , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Etidio/metabolismo , Hidrólisis , Nucleótidos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
6.
Vet World ; 14(10): 2817-2826, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34903944

RESUMEN

The recent coronavirus disease (COVID-19) outbreak is one of its kind in the history of public health that has created a major global threat. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a zoonotic source and hence, reverse zoonosis (disease transmission from humans to animals) increases the risk and rate of SARS-CoV-2 infection. Serological and molecular analyses and experimental infection studies have identified SARS-CoV-2 infection in several animal species in various countries. Different domestic and wild animals, including cats, dogs, tigers, lions, puma, snow leopard, minks, and pet ferrets, are infected naturally with SARS-CoV-2, mostly through suspected human to animal transmission. In addition, in vivo experimental inoculation studies have reported the susceptibility of cats, ferrets, hamsters, Egyptian fruit bats, and non-human primates to the virus. These experimentally infected species are found to be capable of virus transmission to co-housed animals of the same species. However, SARS-CoV-2 showed poor replication in livestock species such as pigs, chickens, and ducks with no detection of viral RNA after the animals were deliberately inoculated with the virus or exposed to the infected animals. As the pets/companion animals are more susceptible to COVID-19, the infection in animals needs an in-depth and careful study to avoid any future transmissions. The one health approach is the best inter-disciplinary method to understand the consequences of viral spread and prevention in novel host populations for the betterment of public health. Further in this review, we will explain in detail the different natural and experimentally induced cases of human to animal SARS-CoV-2 infection.

7.
Commun Biol ; 4(1): 558, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976372

RESUMEN

Multidrug and toxic compound extrusion (MATE) transport proteins confer multidrug resistance on pathogenic microorganisms and affect pharmacokinetics in mammals. Our understanding of how MATE transporters work, has mostly relied on protein structures and MD simulations. However, the energetics of drug transport has not been studied in detail. Many MATE transporters utilise the electrochemical H+ or Na+ gradient to drive substrate efflux, but NorM-VC from Vibrio cholerae can utilise both forms of metabolic energy. To dissect the localisation and organisation of H+ and Na+ translocation pathways in NorM-VC we engineered chimaeric proteins in which the N-lobe of H+-coupled NorM-PS from Pseudomonas stutzeri is fused to the C-lobe of NorM-VC, and vice versa. Our findings in drug binding and transport experiments with chimaeric, mutant and wildtype transporters highlight the versatile nature of energy coupling in NorM-VC, which enables adaptation to fluctuating salinity levels in the natural habitat of V. cholerae.


Asunto(s)
Antiportadores/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Vibrio cholerae/metabolismo , Antiportadores/fisiología , Proteínas Bacterianas/fisiología , Sitios de Unión , Transporte Biológico , Resistencia a Múltiples Medicamentos/genética , Resistencia a Múltiples Medicamentos/fisiología , Hidrógeno/química , Hidrógeno/metabolismo , Iones/metabolismo , Proteínas de Transporte de Catión Orgánico/fisiología , Unión Proteica , Sodio/química , Sodio/metabolismo , Vibrio cholerae/fisiología
8.
FEMS Microbiol Lett ; 368(2)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33355339

RESUMEN

Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two ß sheets, each made up of anti-parallel ß strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.


Asunto(s)
Adhesinas Bacterianas/química , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Inmunoglobulinas/química , Adhesinas Bacterianas/genética , Animales , Interacciones Huésped-Patógeno/inmunología , Humanos
9.
Sci Rep ; 10(1): 15323, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948786

RESUMEN

Complex polyketides of bacterial origin are biosynthesised by giant assembly-line like megaenzymes of the type 1 modular polyketide synthase (PKS) class. The trans-AT family of modular PKSs, whose biosynthetic frameworks diverge significantly from those of the archetypal cis-AT type systems represent a new paradigm in natural product enzymology. One of the most distinctive enzymatic features common to trans-AT PKSs is their ability to introduce methyl groups at positions ß to the thiol ester in the growing polyketide chain. This activity is achieved through the action of a five protein HCS cassette, comprising a ketosynthase, a 3-hydroxy-3-methylglutaryl-CoA synthase, a dehydratase, a decarboxylase and a dedicated acyl carrier protein. Here we report a molecular level description, achieved using a combination of X-ray crystallography, in vitro enzyme assays and site-directed mutagenesis, of the bacillaene synthase dehydratase/decarboxylase enzyme couple PksH/PksI, responsible for the final two steps in ß-methyl branch installation in this trans-AT PKS. Our work provides detailed mechanistic insight into this biosynthetic peculiarity and establishes a molecular framework for HCS cassette enzyme exploitation and manipulation, which has future potential value in guiding efforts in the targeted synthesis of functionally optimised 'non-natural' natural products.


Asunto(s)
Carboxiliasas/metabolismo , Hidroliasas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Polienos/metabolismo , Sintasas Poliquetidas/genética , Conformación Proteica
10.
Chem Commun (Camb) ; 56(69): 9986-9989, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32720950

RESUMEN

We report a two-photon responsive drug delivery system (DDS), namely, p-hydroxyphenacyl-naphthalene-chlorambucil (pHP-Naph-Cbl), having a two-photon absorption (TPA) cross-section of ≥20 GM in the phototherapeutic window (700 nm). Our DDS exhibited both AIE and ESIPT phenomena, which were utilized for the real-time monitoring of anti-cancer drug release.


Asunto(s)
Antineoplásicos Alquilantes/química , Clorambucilo/química , Portadores de Fármacos/química , Naftalenos/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacología , Supervivencia Celular/efectos de los fármacos , Clorambucilo/metabolismo , Clorambucilo/farmacología , Liberación de Fármacos , Humanos , Luz , Células MCF-7 , Microscopía Confocal , Fotones
11.
Sci Adv ; 4(9): eaas9365, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255140

RESUMEN

LmrA is a bacterial ATP-binding cassette (ABC) multidrug exporter that uses metabolic energy to transport ions, cytotoxic drugs, and lipids. Voltage clamping in a Port-a-Patch was used to monitor electrical currents associated with the transport of monovalent cationic HEPES+ by single-LmrA transporters and ensembles of transporters. In these experiments, one proton and one chloride ion are effluxed together with each HEPES+ ion out of the inner compartment, whereas two sodium ions are transported into this compartment. Consequently, the sodium-motive force (interior negative and low) can drive this electrogenic ion exchange mechanism in cells under physiological conditions. The same mechanism is also relevant for the efflux of monovalent cationic ethidium, a typical multidrug transporter substrate. Studies in the presence of Mg-ATP (adenosine 5'-triphosphate) show that ion-coupled HEPES+ transport is associated with ATP-bound LmrA, whereas ion-coupled ethidium transport requires ATP binding and hydrolysis. HEPES+ is highly soluble in a water-based environment, whereas ethidium has a strong preference for residence in the water-repelling plasma membrane. We conclude that the mechanism of the ABC transporter LmrA is fundamentally related to that of an ion antiporter that uses extra steps (ATP binding and hydrolysis) to retrieve and transport membrane-soluble substrates from the phospholipid bilayer.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Farmacorresistencia Bacteriana , Etidio/farmacocinética , HEPES/farmacocinética , Concentración de Iones de Hidrógeno , Lactobacillus/efectos de los fármacos , Lactobacillus/metabolismo , Membrana Dobles de Lípidos/metabolismo , Magnesio/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Técnicas de Placa-Clamp , Fosfolípidos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sodio/metabolismo
12.
Sci Rep ; 6: 38052, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917857

RESUMEN

The expression of polyspecific membrane transporters is one important mechanism by which cells can obtain resistance to structurally different antibiotics and cytotoxic agents. These transporters reduce intracellular drug concentrations to subtoxic levels by mediating drug efflux across the cell envelope. The major facilitator superfamily multidrug transporter LmrP from Lactococcus lactis catalyses drug efflux in a membrane potential and chemical proton gradient-dependent fashion. To enable the interaction with protons and cationic substrates, LmrP contains catalytic carboxyl residues on the surface of a large interior chamber that is formed by transmembrane helices. These residues co-localise together with polar and aromatic residues, and are predicted to be present in two clusters. To investigate the functional role of the catalytic carboxylates, we generated mutant proteins catalysing membrane potential-independent dye efflux by removing one of the carboxyl residues in Cluster 1. We then relocated this carboxyl residue to six positions on the surface of the interior chamber, and tested for restoration of wildtype energetics. The reinsertion at positions towards Cluster 2 reinstated the membrane potential dependence of dye efflux. Our data uncover a remarkable plasticity in proton interactions in LmrP, which is a consequence of the flexibility in the location of key residues that are responsible for proton/multidrug antiport.


Asunto(s)
Proteínas Bacterianas/química , Ácidos Carboxílicos/metabolismo , Lactococcus lactis/enzimología , Proteínas de Transporte de Membrana/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cationes/metabolismo , Lactococcus lactis/química , Lactococcus lactis/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutación , Estructura Secundaria de Proteína , Protones
13.
J Vis Exp ; (78)2013 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-24022545

RESUMEN

Random microseed matrix screening (rMMS) is a protein crystallization technique in which seed crystals are added to random screens. By increasing the likelihood that crystals will grow in the metastable zone of a protein's phase diagram, extra crystallization leads are often obtained, the quality of crystals produced may be increased, and a good supply of crystals for data collection and soaking experiments is provided. Here we describe a general method for rMMS that may be applied to either sitting drop or hanging drop vapor diffusion experiments, established either by hand or using liquid handling robotics, in 96-well or 24-well tray format.


Asunto(s)
Cristalización/métodos , Proteínas/química , Cristalización/instrumentación , Difusión , Gases/química , Robótica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...