Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38860309

RESUMEN

BACKGROUND: Snake venom is a complex mixture of organic and inorganic constituents, including proteins and peptides. Several studies showed that antivenom efficacy differs due to intra- and inter-species venom variation. METHODS: In the current study, comparative functional characterization of major enzymatic proteins present in Craspedocephalus malabaricus and Daboia russelii venom was investigated through various in vitro and immunological cross-reactivity assays. RESULTS: The enzymatic assays revealed that hyaluronidase and phospholipase A2 activities were markedly higher in D. russelii. By contrast, fibrinogenolytic, fibrin clotting and L-amino acid oxidase activities were higher in C. malabaricus venom. ELISA results suggested that all the antivenoms had lower binding potential towards C. malabaricus venom. For D. russelii venom, the endpoint titration value was observed at 1:72 900 for all the antivenoms. In the case of C. malabaricus venom, the endpoint titration value was 1:2700, except for Biological E (1:8100). All these results, along with the avidity assays, indicate the strength of venom-antivenom interactions. Similarly, the western blot results suggest that all the antivenoms showed varied efficacies in binding and detecting the venom antigenic epitopes in both species. CONCLUSIONS: The results highlight the need for species-specific antivenom to better manage snakebite victims.

2.
Curr Microbiol ; 81(7): 193, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805045

RESUMEN

The gut microbiota, amounting to approximately 100 trillion (1014) microbes represents a genetic repertoire that is bigger than the human genome itself. Evidence on bidirectional interplay between human and microbial genes is mounting. Microbiota probably play vital roles in diverse aspects of normal human metabolism, such as digestion, immune modulation, and gut endocrine function, as well as in the genesis and progression of many human diseases. Indeed, the gut microbiota has been most closely linked to various chronic ailments affecting the liver, although concrete scientific data are sparse. In this narrative review, we initially discuss the basic epidemiology of gut microbiota and the factors influencing their initial formation in the gut. Subsequently, we delve into the gut-liver axis and the evidence regarding the link between gut microbiota and the genesis or progression of various liver diseases. Finally, we summarise the recent research on plausible ways to modulate the gut microbiota to alter the natural history of liver disease.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías , Hígado , Humanos , Hígado/microbiología , Hepatopatías/microbiología , Animales , Tracto Gastrointestinal/microbiología
3.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542344

RESUMEN

Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Polifenoles/farmacología , Suplementos Dietéticos , Neoplasias Colorrectales/tratamiento farmacológico
4.
mSystems ; 9(2): e0060623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38189271

RESUMEN

Acinetobacter baumannii causes severe infections in humans, resists multiple antibiotics, and survives in stressful environmental conditions due to modulations of its complex transcriptional regulatory network (TRN). Unfortunately, our global understanding of the TRN in this emerging opportunistic pathogen is limited. Here, we apply independent component analysis, an unsupervised machine learning method, to a compendium of 139 RNA-seq data sets of three multidrug-resistant A. baumannii international clonal complex I strains (AB5075, AYE, and AB0057). This analysis allows us to define 49 independently modulated gene sets, which we call iModulons. Analysis of the identified A. baumannii iModulons reveals validating parallels to previously defined biological operons/regulons and provides a framework for defining unknown regulons. By utilizing the iModulons, we uncover potential mechanisms for a RpoS-independent general stress response, define global stress-virulence trade-offs, and identify conditions that may induce plasmid-borne multidrug resistance. The iModulons provide a model of the TRN that emphasizes the importance of transcriptional regulation of virulence phenotypes in A. baumannii. Furthermore, they suggest the possibility of future interventions to guide gene expression toward diminished pathogenic potential.IMPORTANCEThe rise in hospital outbreaks of multidrug-resistant Acinetobacter baumannii infections underscores the urgent need for alternatives to traditional broad-spectrum antibiotic therapies. The success of A. baumannii as a significant nosocomial pathogen is largely attributed to its ability to resist antibiotics and survive environmental stressors. However, there is limited literature available on the global, complex regulatory circuitry that shapes these phenotypes. Computational tools that can assist in the elucidation of A. baumannii's transcriptional regulatory network architecture can provide much-needed context for a comprehensive understanding of pathogenesis and virulence, as well as for the development of targeted therapies that modulate these pathways.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Infecciones por Acinetobacter/tratamiento farmacológico , Virulencia/genética , Regulación de la Expresión Génica , Antibacterianos/farmacología
5.
JAC Antimicrob Resist ; 6(1): dlae001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38230352

RESUMEN

Objectives: We sought to analyse the antibiotic susceptibility profiles and molecular epidemiology of MDR clinical Pseudomonas aeruginosa isolates from South India using non-MDR isolates as a reference. Methods: We established a comprehensive clinical strain library consisting of 58 isolates collected from patients across the South Indian state of Kerala from March 2017 to July 2019. The strains were subject to antibiotic susceptibility testing, modified carbapenem inactivation method assay for carbapenemase production, PCR sequencing, comparative sequence analysis and quantitative PCR of MDR determinants associated with antibiotic efflux pump systems, fluoroquinolone resistance and carbapenem resistance. We performed in silico modelling of MDR-specific SNPs. Results: Of our collection of South Indian P. aeruginosa clinical isolates, 74.1% were MDR and 55.8% were resistant to the entire panel of antibiotics tested. All MDR isolates were resistant to levofloxacin and 93% were resistant to meropenem. We identified seven distinct, MDR-specific mutations in nalD, three of which are novel. mexA was significantly overexpressed in strains that were resistant to the entire test antibiotic panel while gyrA and gyrB were overexpressed in MDR isolates. Mutations in fluoroquinolone determinants were significantly associated with MDR phenotype and a novel GyrA Y100C substitution was observed. Carbapenem resistance in MDR isolates was associated with loss-of-function mutations in oprD and high prevalence of NDM (blaNDM-1) within our sample. Conclusions: This study provides insight into MDR mechanisms adopted by P. aeruginosa clinical isolates, which may guide the potential development of therapeutic regimens to improve clinical outcomes.

6.
Sci Rep ; 13(1): 19480, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945592

RESUMEN

Wastewater malodour is the proverbial 'elephant in the room' notwithstanding its severe implications on sanitation, health, and hygiene. The predominant malodorous compounds associated with wastewater treatment plants and toilets are volatile organic compounds, such as hydrogen sulphide, ammonia, methanethiol, and organic acids. Among them, methanethiol warrants more attention owing to its relatively low olfactory threshold and associated cytotoxicity. This requires an efficient odour-abatement method since conventional techniques are either cost-prohibitive or leave recalcitrant byproducts. Bacteriophage-based methodology holds promise, and the described work explores the potential. In this study, a non-lysogenous Pseudomonas putida strain is used as a model organism that produces methanethiol in the presence of methionine. Two double-stranded DNA phages of genome sizes > 10 Kb were isolated from sewage. ɸPh_PP01 and ɸPh_PP02 were stable at suboptimal pH, temperature, and at 10% chloroform. Moreover, they showed adsorption efficiencies of 53% and 89% in 12 min and burst sizes of 507 ± 187 and 105 ± 7 virions per cell, respectively. In augmented synthetic wastewater, ɸPh_PP01 and ɸPh_PP02 reduced methanethiol production by 52% and 47%, respectively, with the concomitant reduction in P. putida by 3 logs in 6 h. On extension of the study in P. putida spiked-sewage sample, maximum reduction in methanethiol production was achieved in 3 h, with 49% and 48% for ɸPh_PP01 and ɸPh_PP02, respectively. But at 6 h, efficiency reduced to 36% with both the phages. The study clearly demonstrates the potential of phages as biocontrol agents in the reduction of malodour in wastewater.


Asunto(s)
Bacteriófagos , Pseudomonas putida , Bacteriófagos/genética , Aguas Residuales , Aguas del Alcantarillado/química , Compuestos de Sulfhidrilo
7.
Microrna ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37873952

RESUMEN

BACKGROUND: Breast cancer is one of the leading causes of cancer deaths in women. Early diagnosis offers the best hope for a cure. Ductal carcinoma in situ is considered a precursor of invasive ductal carcinoma of the breast. In this study, we carried out microRNA sequencing from 7 ductal carcinoma in situ (DCIS), 6 infiltrating ductal carcinomas (IDC Stage IIA) with paired normal, and 5 unpaired normal breast tissue samples. We identified 76 miRNAs that were differentially expressed in DCIS and IDC. METHODS: Additionally, we provide preliminary evidence of miR-365b-3p and miR-7-1-3p being overexpressed, and miR-6507-5p, miR-487b-3p, and miR-654-3p being downregulated in DCIS relative to normal breast tissue. We also identified a miRNA miR-766-3p that was overexpressed in early-stage IDCs. The overexpression of miR-301a-3p in DCIS and IDC was confirmed in 32 independent breast cancer tissue samples. RESULTS: Higher expression of miR-301a-3p is associated with poor overall survival in The Can-cer Genome Atlas Breast Cancer (TCGA-BRCA) dataset, indicating that it may be associated with DCIS at high risk of progressing to IDC and warrants deeper investigation. CONCLUSION: We also analyzed competing endogenous networks associated with differentially expressed miRNAs and identified LRRC75A-AS1 and MAGI2-AS3 as lncRNAs that potentially play an important role in early-stage breast cancers.

8.
Mikrochim Acta ; 190(10): 390, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700117

RESUMEN

Zirconium copper oxide microflowers (Zr/CuO MF) based non-enzymatic sensor was developed for glucose detection in saliva, urine, and blood. An easy urea hydrolysis method was employed for the synthesis of the metal oxide and further calcined to improve the catalytic property. The flower-like morphology of the Zr/CuO was confirmed by SEM analysis and the presence of copper and zirconium was examined using energy dispersive X-ray analysis (EDAX). The Zr/CuO MF modified screen-printed electrodes exhibited excellent glucose sensing performance in 0.15 M NaOH medium and could quantify glucose in the range from 10 µM to 27 mM. A high sensitivity of 1.815 ± 0.003 mA mM-1 cm-2 was obtained for lower glucose concentration from 15 µM to 3 mM and 1.250 ± 0.006 mA mM-1 cm-2 for higher concentration glucose from 3 to 27 mM. The limit of detection of the fabricated sensor was found to be 0.8 µM. The sensor displayed high selectivity and stability towards glucose in different body fluids like saliva, urine, and blood serum at a working potential of 0.6 V (vs. Ag/AgCl). In saliva, urine, and serum samples, the sensor exhibited excellent recovery of 95-108, 92-108, and 93-101% in saliva, urine, and serum, respectively, with a relative standard deviation of less than 10%, demonstrating high accuracy and reliability of the sensor. The developed sensor is promising for developing an invasive and non-invasive point-of-care testing device for glucose detection.


Asunto(s)
Líquidos Corporales , Saliva , Suero , Cobre , Glucosa , Circonio , Reproducibilidad de los Resultados , Óxidos
9.
Front Pharmacol ; 14: 1274076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745056

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2023.1159409.].

10.
Toxins (Basel) ; 15(8)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37624267

RESUMEN

The limitations posed by currently available antivenoms have emphasized the need for alternative treatments to counteract snakebite envenomation. Even though exact epidemiological data are lacking, reports have indicated that most global snakebite deaths are reported in India. Among the many problems associated with snakebite envenomation, issues related to the availability of safer and more efficient antivenoms are of primary concern. Since India has the highest number of global snakebite deaths, efforts should be made to reduce the burden associated with snakebite envenoming. Alternative methods, including aptamers, camel antivenoms, phage display techniques for generating high-affinity antibodies and antibody fragments, small-molecule inhibitors, and natural products, are currently being investigated for their effectiveness. These alternative methods have shown promise in vitro, but their in vivo effectiveness should also be evaluated. In this review, the issues associated with Indian polyvalent antivenoms in neutralizing venom components from geographically distant species are discussed in detail. In a nutshell, this review gives an overview of the current drawbacks of using animal-derived antivenoms and several alternative strategies that are currently being widely explored.


Asunto(s)
Productos Biológicos , Mordeduras de Serpientes , Animales , Humanos , Mordeduras de Serpientes/tratamiento farmacológico , Antivenenos/uso terapéutico , Pueblo Asiatico , Camelus , India
11.
Front Pharmacol ; 14: 1159409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397502

RESUMEN

Programmed cell death (PCD) is the universal process that maintains cellular homeostasis and regulates all living systems' development, health and disease. Out of all, apoptosis is one of the major PCDs that was found to play a crucial role in many disease conditions, including cancer. The cancer cells acquire the ability to escape apoptotic cell death, thereby increasing their resistance towards current therapies. This issue has led to the need to search for alternate forms of programmed cell death mechanisms. Paraptosis is an alternative cell death pathway characterized by vacuolation and damage to the endoplasmic reticulum and mitochondria. Many natural compounds and metallic complexes have been reported to induce paraptosis in cancer cell lines. Since the morphological and biochemical features of paraptosis are much different from apoptosis and other alternate PCDs, it is crucial to understand the different modulators governing it. In this review, we have highlighted the factors that trigger paraptosis and the role of specific modulators in mediating this alternative cell death pathway. Recent findings include the role of paraptosis in inducing anti-tumour T-cell immunity and other immunogenic responses against cancer. A significant role played by paraptosis in cancer has also scaled its importance in knowing its mechanism. The study of paraptosis in xenograft mice, zebrafish model, 3D cultures, and novel paraptosis-based prognostic model for low-grade glioma patients have led to the broad aspect and its potential involvement in the field of cancer therapy. The co-occurrence of different modes of cell death with photodynamic therapy and other combinatorial treatments in the tumour microenvironment are also summarized here. Finally, the growth, challenges, and future perspectives of paraptosis research in cancer are discussed in this review. Understanding this unique PCD pathway would help to develop potential therapy and combat chemo-resistance in various cancer.

12.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37444412

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a heterogeneous cancer associated with a poor prognosis in advanced stages. In India, it is the sixth most common cause of cancer-related mortality. In this study, we employed high-resolution mass spectrometry-based quantitative proteomics to characterize the differential protein expression pattern associated with ESCC. We identified several differentially expressed proteins including PDPN, TOP2A, POSTN and MMP2 that were overexpressed in ESCC. In addition, we identified downregulation of esophagus tissue-enriched proteins such as SLURP1, PADI1, CSTA, small proline-rich proteins such as SPRR3, SPRR2A, SPRR1A, KRT4, and KRT13, involved in squamous cell differentiation. We identified several overexpressed proteins mapped to the 3q24-29 chromosomal region, aligning with CNV alterations in this region reported in several published studies. Among these, we identified overexpression of SOX2, TP63, IGF2BP2 and RNF13 that are encoded by genes in the 3q26 region. Functional enrichment analysis revealed proteins involved in cell cycle pathways, DNA replication, spliceosome, and DNA repair pathways. We identified the overexpression of multiple proteins that play a major role in alleviating ER stress, including SYVN1 and SEL1L. The SYVN1/SEL1L complex is an essential part of the ER quality control machinery clearing misfolded proteins from the ER. SYVN1 is an E3 ubiquitin ligase that ubiquitinates ER-resident proteins. Interestingly, there are also other non-canonical substrates of SYVN1 which are known to play a crucial role in tumor progression. Thus, SYVN1 could be a potential therapeutic target in ESCC.

13.
Adv Exp Med Biol ; 1412: 253-270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378772

RESUMEN

Over the last 34 months, at least 10 severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) distinct variants have evolved. Among these, some were more infectious while others were not. These variants may serve as candidates for identification of the signature sequences linked to infectivity and viral transgressions. Based on our previous hijacking and transgression hypothesis, we aimed to investigate whether SARS-CoV-2 sequences associated with infectivity and trespassing of long noncoding RNAs (lncRNAs) provide a possible recombination mechanism to drive the formation of new variants. This work involved a sequence and structure-based approach to screen SARS-CoV-2 variants in silico, taking into account effects of glycosylation and links to known lncRNAs. Taken together, the findings suggest that transgressions involving lncRNAs may be linked with changes in SARS-CoV-2-host interactions driven by glycosylation events.


Asunto(s)
COVID-19 , ARN Largo no Codificante , Humanos , SARS-CoV-2/genética , COVID-19/genética , Recombinación Genética
14.
Front Nutr ; 10: 1200926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342549

RESUMEN

Introduction: Environmental enteropathy (EE), a chronic small intestine disease characterized by gut inflammation, is widely prevalent in low-income countries and is hypothesized to be caused by continuous exposure to fecal contamination. Targeted nutritional interventions using potential probiotic strains from fermented foods can be an effective strategy to inhibit enteric pathogens and prevent chronic gut inflammation. Methods: We isolated potential strains from fermented rice water and lemon pickle and investigated their cell surface properties, antagonistic properties, adhesion to HT-29 cells, and inhibition of pathogen adherence to HT-29 cells. Bacteriocin-like inhibitory substances (BLIS) were purified, and in vivo, survival studies in Caenorhabditis elegans infected with Salmonella enterica MW116733 were performed. We further checked the expression pattern of pro and anti-inflammatory cytokines (IL-6, IL8, and IL-10) in HT-29 cells supplemented with strains. Results: The strains isolated from rice water (RS) and lemon pickle (T1) were identified as Limosilactobacillus fermentum MN410703 and MN410702, respectively. Strains showed probiotic properties like tolerance to low pH (pH 3.0), bile salts up to 0.5%, simulated gastric juice at low pH, and binding to extracellular matrix molecules. Auto-aggregation of T1 was in the range of 85% and significantly co-aggregated with Klebsiella pneumoniae, S. enterica, and Escherichia coli at 48, 79, and 65%, respectively. Both strains had a higher binding affinity to gelatin and heparin compared to Bacillus clausii. Susceptibility to most aminoglycoside, cephalosporin, and macrolide classes of antibiotics was also observed. RS showed BLIS activity against K. pneumoniae, S. aureus, and S. enterica at 60, 48, and 30%, respectively, and the protective effects of BLIS from RS in the C. elegans infection model demonstrated a 70% survival rate of the worms infected with S. enterica. RS and T1 demonstrated binding efficiency to HT-29 cell lines in the 38-46% range, and both strains inhibited the adhesion of E. coli MDR and S. enterica. Upregulation of IL-6 and IL-10 and the downregulation of IL-8 were observed when HT-29 cells were treated with RS, indicating the immunomodulatory effects of the strain. Discussion: The potential strains identified could effectively inhibit enteric pathogens and prevent environmental enteropathy.

15.
J Med Microbiol ; 72(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36748622

RESUMEN

The complexity of the antimicrobial resistance (AMR) crisis and its global impact on healthcare invokes an urgent need to understand the underlying forces and to conceive and implement innovative solutions. Beyond focusing on a traditional pathogen-centric approach to antibiotic discovery yielding diminishing returns, future therapeutic interventions can expand to focus more comprehensively on host-pathogen interactions. In this manner, increasing the resiliency of our innate immune system or attenuating the virulence mechanisms of the pathogens can be explored to improve therapeutic outcomes. Key pathogen survival strategies such as tolerance, persistence, aggregation, and biofilm formation can be considered and interrupted to sensitize pathogens for more efficient immune clearance. Understanding the evolution and emergence of so-called 'super clones' that drive AMR spread with rapid clonotyping assays may guide more precise antibiotic regimens. Innovative alternatives to classical antibiotics such as bacteriophage therapy, novel engineered peptide antibiotics, ionophores, nanomedicines, and repurposing drugs from other domains of medicine to boost innate immunity are beginning to be successfully implemented to combat AMR. Policy changes supporting shorter durations of antibiotic treatment, greater antibiotic stewardship, and increased surveillance measures can enhance patient safety and enable implementation of the next generation of targeted prevention and control programmes at a global level.


Asunto(s)
Antibacterianos , Programas de Optimización del Uso de los Antimicrobianos , Humanos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Tolerancia a Medicamentos , Interacciones Huésped-Patógeno
16.
J Cell Commun Signal ; 17(3): 1089-1095, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36715855

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.

17.
Anal Biochem ; 662: 114998, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519742

RESUMEN

A simple yet efficient assay for the quantitation of proteins ranging from plasma proteins to purified proteins from whole cell lysate, based on the bioconjugation reaction between protein and Meldrum's acid Activated Furan (MAF) is described. This easy to use, sensitive method is based on the conjugation of amine functionalities present on the protein with MAF to form the corresponding Donor Acceptor Stenhouse Adducts (DASAs) with characteristic absorption in the visible region. The reaction is rapid as well as reproducible and shows a proportionate increase in color change over a broad range of protein concentration. The assay was found to be sensitive up to 0.125 mg/mL concentration of the protein and was compatible with most of the commonly employed detergents and isolation protocols which makes it ideal for the estimation of protein samples containing detergents. Another striking feature of this protocol is its tolerance towards other major interference contributors such as chelating agents, reducing agents, carbohydrates and protease inhibitors.


Asunto(s)
Detergentes , Dioxanos , Dioxanos/farmacología , Proteínas
18.
J Cell Commun Signal ; 17(1): 217-227, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36480100

RESUMEN

Orexins are excitatory neuropeptides, which are predominantly associated with feeding behavior, sleep-wake cycle and energy homeostasis. The orexinergic system comprises of HCRTR1 and HCRTR2, G-protein-coupled receptors of rhodopsin family and the endogenous ligands processed from HCRT pro-hormone, Orexin A and Orexin B. These neuropeptides are biosynthesized by the orexin neurons present in the lateral hypothalamus area, with dense projections to other brain regions. The orexin-receptor signaling is implicated in various metabolic as well as neurological disorders, making it a promising target for pharmacological interventions. However, there is limited information available on the collective representation of the signal transduction pathways pertaining to the orexin-orexin receptor signaling system. Here, we depict a compendium of the Orexin A/B stimulated reactions in the form of a basic signaling pathway map. This map catalogs the reactions into five categories: molecular association, activation/inhibition, catalysis, transport, and gene regulation. A total of 318 downstream molecules were annotated adhering to the guidelines of NetPath curation. This pathway map can be utilized for further assessment of signaling events associated with orexin-mediated physiological functions and is freely available on WikiPathways, an open-source pathway database ( https://www.wikipathways.org/index.php/Pathway:WP5094 ).

19.
Bioresour Technol ; 370: 128555, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586428

RESUMEN

The gradually increasing need for fossil fuels demands renewable biofuel substitutes. This has fascinated an increasing investigation to design innovative energy fuels that have comparable Physico-chemical and combustion characteristics with fossil-derived fuels. The efficient microbes for bioenergy synthesis desire the proficiency to consume a large quantity of carbon substrate, transfer various carbohydrates through efficient metabolic pathways, capability to withstand inhibitory components and other degradation compounds, and improve metabolic fluxes to synthesize target compounds. Metabolically engineered microbes could be an efficient methodology for synthesizing biofuel from cellulosic biomass by cautiously manipulating enzymes and metabolic pathways. This review offers a comprehensive perspective on the trends and advances in metabolic and genetic engineering technologies for advanced biofuel synthesis by applying various heterologous hosts. Probable technologies include enzyme engineering, heterologous expression of multiple genes, CRISPR-Cas technologies for genome editing, and cell surface display.


Asunto(s)
Biocombustibles , Ingeniería Genética , Ingeniería Genética/métodos , Lignina/química , Edición Génica/métodos , Ingeniería Metabólica/métodos
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122045, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327811

RESUMEN

A paper-based colourimetric assay for the Point-of-Care Testing (PoCT) of bilirubin has been developed based on the formation of a green-coloured copper-bilirubin complex from a blue-coloured tetraamminecopper(II) sulphate complex. The reaction was studied and optimized by UV-Visible absorption spectroscopy and translated onto a paper strip. Hydrophobic circular well patterns on Whatman chromatography paper were created by wax printing. The tetraamminecopper(II) sulphate complex was drop cast and dried on the reagent zones in the wax-patterned paper. The images of reagent zones captured using a scanner were analyzed using ImageJ software. Bilirubin spiked blood serum was tested in the concentration range of 1.2 to 950 µM. The PAD exhibited sensitivities of 0.4197 a.u/µM and 0.1040 a.u/µM for concentration ranges of bilirubin 1.2 to 96 µM and 105 to 950 µM respectively and a low detection limit of 0.799 µM. The method is highly selective to bilirubin, even in the presence of other biomarkers in serum. A plasma separation membrane incorporated PAD was fabricated for the final testing and quantification of bilirubin from whole blood.


Asunto(s)
Colorimetría , Papel , Bilirrubina , Pruebas en el Punto de Atención , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...