Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 9(38): 7927-7954, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34612291

RESUMEN

Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.


Asunto(s)
Técnicas Electroquímicas/métodos , Glucosa/análisis , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Catálisis , Electrodos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Humanos
2.
J Nanosci Nanotechnol ; 16(1): 643-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27398501

RESUMEN

Nanohexaconazole is a highly efficient fungicide against Rhizoctonia solani. Nanoparticles are alleged to adversely affect the non-target organisms. In order to evaluate such concern, the present study was carried out to investigate the effect of nanohexaconazole and its commercial formulation on sensitive nitrogen fixing blue green algae (BGA) and bacteria. Various activities of algae and bacteria namely growth, N-fixation, N-assimilation, Indole acetic acid (IAA) production and phosphate solubilization were differently affected in the presence of hexaconazole. Although, there was stimulatory to slightly inhibitory effect on the growth measurable parameters of the organisms studied at the recommended dose of nanohexaconazole, but its higher dose was inhibitory to all these microorganisms. On the other hand, the recommended as well as higher dose of commercial hexaconazole showed much severe inhibition of growth and metabolic activity of these organisms as compared to the nano preparation. The uses of nanohexazconazole instead of hexaconazole as a fungicide will not only help to control various fungal pathogens but also sustain the growth and activity of these beneficial microorganisms for sustaining soil fertility and productivity.


Asunto(s)
Antifúngicos/farmacología , Cianobacterias/metabolismo , Ácidos Indolacéticos/metabolismo , Nanopartículas , Fijación del Nitrógeno/efectos de los fármacos , Triazoles/farmacología , Antifúngicos/química , Triazoles/química
3.
J Nanosci Nanotechnol ; 15(2): 1350-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26353654

RESUMEN

The study was aimed to develop a nano form of an existing fungicide for improving plant protection and reducing crop losses caused by fungal pathogens. The protocol for the preparation and estimation of nanohexaconazole was developed. Technically pure hexaconazole was converted into its nanoform using polyethyleneglycol-400 (PEG) as the surface stabilizing agent. Nanohexaconazole was characterized using Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) studies. The average particle size of nanohexaconazole was about 100 nm. An analytical method was also developed for quality control of the nanofungicide by GLC fitted with flame ionization detector. Its limit of detection was 2.5 ppm. Fungicidal potential of nanohexaconazole was better in comparison to that of conventional hexaconazole. Hydrolytic and thermal stability studies confirmed its stability at par with the conventional formulation of fungicide. Impact of nanohexaconazole on soil nitrifiers was tested in vitro and there were no significant adverse effect in their numbers observed as compared to conventional registered formulation, proving the safety of the nanofungicide.


Asunto(s)
Composición de Medicamentos/normas , Nanopartículas/administración & dosificación , Nitrobacter/efectos de los fármacos , Nitrosomonas/efectos de los fármacos , Triazoles/administración & dosificación , Triazoles/síntesis química , Supervivencia Celular/efectos de los fármacos , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/síntesis química , Fungicidas Industriales/toxicidad , India , Ensayo de Materiales , Nanopartículas/química , Nanopartículas/toxicidad , Nitrificación/fisiología , Nitrobacter/fisiología , Nitrosomonas/fisiología , Tamaño de la Partícula , Control de Calidad , Microbiología del Suelo , Triazoles/toxicidad
4.
J Sep Sci ; 37(9-10): 1126-33, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24677737

RESUMEN

In order to identify the most suitable method for the estimation of nanosulfur for studying its residue dynamics, the present work was taken up. HPLC and GC methods were explored for its analysis. A comparative study of the existing analytical methods for the quality control of nanosulfur was undertaken. UV spectrophotometry and HPLC methods were superior with lower LOD when compared to GC-MS, which was not satisfactory due to breakage of catenated S20 into S6 and S8 . The method has been validated by analyzing various nanosulfur formulations of known concentrations. The recovery of the UV and HPLC methods ranged from 80.71 to 109.51% and 82.31 to 109.84%, respectively. The LOD of UV, GC-MS, and HPLC is 4, 20, and 1 ppm, respectively. The retention time of sulfur was 13.77 (HPLC), 2.89 (ultra high performance liquid chromatography), and 12.715 + 21.524 min (GC-MS). The method was successfully utilized for estimating sulfur in natural samples such as water from a sulfur hot spring and wastewater. The method has been validated by following the method recommended by the American Society for Testing and Materials. The HPLC method emerged as the best analytical method for the estimation of elemental sulfur.


Asunto(s)
Nanoestructuras/análisis , Manantiales Naturales/química , Azufre/análisis , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA