Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(2)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523993

RESUMEN

The theory behind the electrical switching of antiferromagnets is premised on the existence of a well-defined broken symmetry state that can be rotated to encode information. A spin glass is, in many ways, the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. Here, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe1/3 + δNbS2, rooted in the electrically stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. Manipulating antiferromagnetic spin textures using a spin glass' collective dynamics opens the field of antiferromagnetic spintronics to new material platforms with complex magnetic textures.

2.
Nat Mater ; 19(9): 1036, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32704158

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Mater ; 19(10): 1062-1067, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32424369

RESUMEN

Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such 'Ising-nematic' systems is a simple scalar. Here, using a spatially resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe1/3NbS2. The crucial difference is that the nematic order on the triangular lattice is a [Formula: see text] or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously reoriented by external perturbations. This discovery lays the groundwork for devices that exploit analogies with nematic liquid crystals.

4.
Nat Mater ; 19(4): 474, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31723257

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Mater ; 19(2): 153-157, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31685945

RESUMEN

Advances in controlling the correlated behaviour of transition metal dichalcogenides have opened a new frontier of many-body physics in two dimensions. A field where these materials have yet to make a deep impact is antiferromagnetic spintronics-a relatively new research direction promising technologies with fast switching times, insensitivity to magnetic perturbations and reduced cross-talk1-3. Here, we present measurements on the intercalated transition metal dichalcogenide Fe1/3NbS2 that exhibits antiferromagnetic ordering below 42 K (refs. 4,5). We find that remarkably low current densities of the order of 104 A cm-2 can reorient the magnetic order, which can be detected through changes in the sample resistance, demonstrating its use as an electronically accessible antiferromagnetic switch. Fe1/3NbS2 is part of a larger family of magnetically intercalated transition metal dichalcogenides, some of which may exhibit switching at room temperature, forming a platform from which to build tuneable antiferromagnetic spintronic devices6,7.

6.
Nat Nanotechnol ; 14(2): 145-150, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559484

RESUMEN

When the Fermi level is aligned with the Dirac point of graphene, reduced charge screening greatly enhances electron-electron scattering1-5. In an optically excited system, the kinematics of electron-electron scattering in Dirac fermions is predicted to give rise to novel optoelectronic phenomena6-11. In this paper, we report on the observation of an intrinsic photocurrent in graphene, which occurs in a different parameter regime from all the previously observed photothermoelectric or photovoltaic photocurrents in graphene12-20: the photocurrent emerges exclusively at the charge neutrality point, requiring no finite doping. Unlike other photocurrent types that are enhanced near p-n or contact junctions, the photocurrent observed in our work arises near the edges/corners. By systematic data analyses, we show that the phenomenon stems from the unique electron-electron scattering kinematics in charge-neutral graphene. Our results not only highlight the intriguing electron dynamics in the optoelectronic response of Dirac fermions, but also offer a new scheme for photodetection and energy harvesting applications based on intrinsic, charge-neutral Dirac fermions.

7.
Sci Adv ; 3(5): e1602983, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28560340

RESUMEN

By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.

8.
Nat Commun ; 7: 12492, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27545105

RESUMEN

Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.

9.
Nature ; 535(7611): 266-70, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27376477

RESUMEN

The dispersion of charge carriers in a metal is distinctly different from that of free electrons owing to their interactions with the crystal lattice. These interactions may lead to quasiparticles mimicking the massless relativistic dynamics of high-energy particle physics, and they can twist the quantum phase of electrons into topologically non-trivial knots-producing protected surface states with anomalous electromagnetic properties. These effects intertwine in materials known as Weyl semimetals, and in their crystal-symmetry-protected analogues, Dirac semimetals. The latter show a linear electronic dispersion in three dimensions described by two copies of the Weyl equation (a theoretical description of massless relativistic fermions). At the surface of a crystal, the broken translational symmetry creates topological surface states, so-called Fermi arcs, which have no counterparts in high-energy physics or conventional condensed matter systems. Here we present Shubnikov-de Haas oscillations in focused-ion-beam-prepared microstructures of Cd3As2 that are consistent with the theoretically predicted 'Weyl orbits', a kind of cyclotron motion that weaves together Fermi-arc and chiral bulk states. In contrast to conventional cyclotron orbits, this motion is driven by the transfer of chirality from one Weyl node to another, rather than momentum transfer of the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.

10.
Nature ; 520(7549): 650-5, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25901686

RESUMEN

Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.

11.
Phys Rev Lett ; 112(24): 247401, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24996107

RESUMEN

We report on temperature-dependent photocurrent measurements of high-quality dual-gated monolayer graphene p-n junction devices. A photothermoelectric effect governs the photocurrent response in our devices, allowing us to track the hot-electron temperature and probe hot-electron cooling channels over a wide temperature range (4 to 300 K). At high temperatures (T > T(*)), we found that both the peak photocurrent and the hot spot size decreased with temperature, while at low temperatures (T < T(*)), we found the opposite, namely that the peak photocurrent and the hot spot size increased with temperature. This nonmonotonic temperature dependence can be understood as resulting from the competition between two hot-electron cooling pathways: (a) (intrinsic) momentum-conserving normal collisions that dominates at low temperatures and (b) (extrinsic) disorder-assisted supercollisions that dominates at high temperatures. Gate control in our high-quality samples allows us to resolve the two processes in the same device for the first time. The peak temperature T(*) depends on carrier density and disorder concentration, thus allowing for an unprecedented way of controlling graphene's photoresponse.

12.
Science ; 334(6056): 648-52, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21979935

RESUMEN

We report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation (of wavelength 850 nanometers) at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and density dependence of the photoresponse, provide strong evidence that nonlocal hot carrier transport, rather than the photovoltaic effect, dominates the intrinsic photoresponse in graphene. This regime, which features a long-lived and spatially distributed hot carrier population, may offer a path to hot carrier-assisted thermoelectric technologies for efficient solar energy harvesting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...