Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794172

RESUMEN

Histone deacetylases inhibitors (HDACis) have shown promising therapeutic outcomes in haematological malignancies such as leukaemia, multiple myeloma, and lymphoma, with disappointing results in solid tumours when used as monotherapy. As a result, combination therapies either with radiation or other deoxyribonucleic acid (DNA) damaging agents have been suggested as ideal strategy to improve their efficacy in solid tumours. Numerous in vitro and in vivo studies have demonstrated that HDACis can sensitise malignant cells to both electromagnetic and particle types of radiation by inhibiting DNA damage repair. Although the radiosensitising ability of HDACis has been reported as early as the 1990s, the mechanisms of radiosensitisation are yet to be fully understood. This review brings forth the various protocols used to sequence the administration of radiation and HDACi treatments in the different studies. The possible contribution of these various protocols to the ambiguity that surrounds the mechanisms of radiosensitisation is also highlighted.

2.
Clin Cancer Res ; 30(11): 2531-2544, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38593212

RESUMEN

PURPOSE: Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs. EXPERIMENTAL DESIGN: The in vitro characteristics and in vivo biodistribution, antitumor efficacy, and tolerability of 225Ac-macropa-pelgifatamab (225Ac-pelgi) and other TATs were investigated in cell line- and patient-derived prostate cancer xenograft models. The antitumor efficacy of 225Ac-pelgi was also investigated in combination with the androgen receptor inhibitor darolutamide. RESULTS: Actinium-225-labeling of 225Ac-pelgi was efficient already at room temperature. Potent in vitro cytotoxicity was seen in PSMA-expressing (LNCaP, MDA-PCa-2b, and C4-2) but not in PSMA-negative (PC-3 and DU-145) cell lines. High tumor accumulation was seen for both 225Ac-pelgi and 225Ac-DOTA-pelgi in the MDA-PCa-2b xenograft model. In the C4-2 xenograft model, 225Ac-pelgi showed enhanced antitumor efficacy with a T/Cvolume (treatment/control) ratio of 0.10 compared with 225Ac-DOTA-pelgi, 225Ac-DOTA-J591, and 227Th-HOPO-pelgifatamab (227Th-pelgi; all at 300 kBq/kg) with T/Cvolume ratios of 0.37, 0.39, and 0.33, respectively. 225Ac-pelgi was less myelosuppressive than 227Th-pelgi. 225Ac-pelgi showed dose-dependent treatment efficacy in the patient-derived KuCaP-1 model and strong combination potential with darolutamide in both cell line- (22Rv1) and patient-derived (ST1273) xenograft models. CONCLUSIONS: These results provide a strong rationale to investigate 225Ac-pelgi in patients with prostate cancer. A clinical phase I study has been initiated (NCT06052306).


Asunto(s)
Actinio , Partículas alfa , Antígenos de Superficie , Glutamato Carboxipeptidasa II , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Humanos , Animales , Ratones , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Partículas alfa/uso terapéutico , Distribución Tisular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Radiofármacos/administración & dosificación
3.
Bioorg Chem ; 128: 106101, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35998518

RESUMEN

Isoflavone derivatives were prepared from benzoylbenzofuran precursors. The synthesized compounds were analyzed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, as well as high-resolution mass spectrometry (HRMS) to confirm their structures. The benzoylbenzofuran and isoflavone analogues were evaluated for inhibition of sirtuin 1 (SIRT1) and cell proliferation in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Several isoflavone and benzoylbenzofuran derivatives exhibited potent antiproliferative effects against the MDA-MB-231 cancer cell line. Most of the isoflavone derivatives attenuated SIRT1 activity to below 50%. The most active compounds were the isoflavone quinones 38, 39, and 40, at IC50 values of 5.58 ± 0.373, 1.62 ± 0.0720, and 7.24 ± 0.823 µM, respectively. Importantly, the most active compound, 6-methoxy-4',6'-dimethylisoflavone-2',5'-quinone (39) displayed SIRT1 inhibitory activity comparable to that of the reference compound, suramin. The in silico docking simulations in the active site of SIRT1 further substantiated the experimental results and explored the binding orientations of potent compounds in the active site of the target.


Asunto(s)
Antineoplásicos , Isoflavonas , Neoplasias de la Mama Triple Negativas , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoflavonas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Sirtuina 1 , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
4.
Cancers (Basel) ; 14(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35406593

RESUMEN

Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.

5.
Sci Rep ; 11(1): 20854, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675263

RESUMEN

The radiosensitivity of haematopoietic stem and progenitor cells (HSPCs) to neutron radiation remains largely underexplored, notwithstanding their potential role as target cells for radiation-induced leukemogenesis. New insights are required for radiation protection purposes, particularly for aviation, space missions, nuclear accidents and even particle therapy. In this study, HSPCs (CD34+CD38+ cells) were isolated from umbilical cord blood and irradiated with 60Co γ-rays (photons) and high energy p(66)/Be(40) neutrons. At 2 h post-irradiation, a significantly higher number of 1.28 ± 0.12 γ-H2AX foci/cell was observed after 0.5 Gy neutrons compared to 0.84 ± 0.14 foci/cell for photons, but this decreased to similar levels for both radiation qualities after 18 h. However, a significant difference in late apoptosis was observed with Annexin-V+/PI+ assay between photon and neutron irradiation at 18 h, 43.17 ± 6.10% versus 55.55 ± 4.87%, respectively. A significant increase in MN frequency was observed after both 0.5 and 1 Gy neutron irradiation compared to photons illustrating higher levels of neutron-induced cytogenetic damage, while there was no difference in the nuclear division index between both radiation qualities. The results point towards a higher induction of DNA damage after neutron irradiation in HSPCs followed by error-prone DNA repair, which contributes to genomic instability and a higher risk of leukemogenesis.


Asunto(s)
Daño del ADN/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Neutrones/efectos adversos , Células Cultivadas , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Células Madre Hematopoyéticas/metabolismo , Humanos , Transferencia Lineal de Energía , Pruebas de Micronúcleos
6.
Theranostics ; 11(16): 7911-7947, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335972

RESUMEN

Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.


Asunto(s)
Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Radiofármacos/uso terapéutico , Humanos , Medicina de Precisión/métodos , Radioisótopos/uso terapéutico
7.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209513

RESUMEN

Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.

8.
J Vis Exp ; (178)2021 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-35001906

RESUMEN

Ionizing radiation is a potent inducer of DNA damage and a well-documented carcinogen. Biological dosimetry comprises the detection of biological effects induced by exposure to ionizing radiation to make an individual dose assessment. This is pertinent in the framework of radiation emergencies, where health assessments and planning of clinical treatment for exposed victims are critical. Since DNA double strand breaks (DSB) are considered to be the most lethal form of radiation-induced DNA damage, this protocol presents a method to detect DNA DSB in blood samples. The methodology is based on the detection of a fluorescent labelled phosphorylated DNA repair protein, namely, γ-H2AX. The use of an automated microscopy platform to score the number of γ-H2AX foci per cell allows a standardized analysis with a significant decrease in the turn-around time. Therefore, the γ-H2AX assay has the potential to be one of the fastest and sensitive assays for biological dosimetry. In this protocol, whole blood samples from healthy adult volunteers will be processed and irradiated in vitro in order to illustrate the usage of the automated and sensitive γ-H2AX foci assay for biodosimetry applications. An automated slide scanning system and analysis platform with an integrated fluorescence microscope is used, which allows the fast, automatic scoring of DNA DSB with a reduced degree of bias.


Asunto(s)
Histonas , Proyectos de Investigación , Adulto , Roturas del ADN de Doble Cadena , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Histonas/metabolismo , Humanos , Linfocitos/metabolismo
9.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661782

RESUMEN

The lack of information on how biological systems respond to low-dose and low dose-rate exposures makes it difficult to accurately assess the carcinogenic risks. This is of critical importance to space radiation, which remains a serious concern for long-term manned space exploration. In this study, the γ-H2AX foci assay was used to follow DNA double-strand break (DSB) induction and repair following exposure to neutron irradiation, which is produced as secondary radiation in the space environment. Human lymphocytes were exposed to high dose-rate (HDR: 0.400 Gy/min) and low dose-rate (LDR: 0.015 Gy/min) p(66)/Be(40) neutrons. DNA DSB induction was investigated 30 min post exposure to neutron doses ranging from 0.125 to 2 Gy. Repair kinetics was studied at different time points after a 1 Gy neutron dose. Our results indicated that γ-H2AX foci formation was 40% higher at HDR exposure compared to LDR exposure. The maximum γ-H2AX foci levels decreased gradually to 1.65 ± 0.64 foci/cell (LDR) and 1.29 ± 0.45 (HDR) at 24 h postirradiation, remaining significantly higher than background levels. This illustrates a significant effect of dose rate on neutron-induced DNA damage. While no significant difference was observed in residual DNA damage after 24 h, the DSB repair half-life of LDR exposure was slower than that of HDR exposure. The results give a first indication that the dose rate should be taken into account for cancer risk estimations related to neutrons.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/efectos de la radiación , Neutrones Rápidos , ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Histonas/metabolismo , Histonas/efectos de la radiación , Humanos , Linfocitos/metabolismo , Linfocitos/efectos de la radiación , Masculino , Radiación Ionizante , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA