Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Vet Res Commun ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647986

RESUMEN

Urinary tract infection (UTI) caused by antimicrobial resistant bacteria is common in dogs leading to serious health impact in pet animal as well as on human health. Understanding the prevalent uropathogens and their drug susceptibility is essential for limiting the antimicrobial resistance through implementation of stewardship policies. In view of this, present study was envisaged to determine the prevalent bacterial uropathogens and their antibiogram from clinical cases of canine UTI. Urine samples were collected from 35 dogs presented with clinical signs of UTI and a total of 27 bacterial isolates were recovered. Among that Escherichia coli was the most predominant isolate followed by Klebsiella aerogenes, Staphylococcus aureus, Proteus mirabilis, Enterococcus sp. and Citrobacter freundii. All isolates were found resistant to one or more 1st line antibiotics recommended by consensus guidelines and 70% of total isolates showed multidrug resistance. Additionally, this study evaluated the weightage of empirical therapy as per the consensus guidelines over antimicrobial susceptibility test guided treatment. Dogs with uncomplicated UTI were selected and categorized into three different groups (n = 6). Group 1 was treated with common empirical choice amoxycillin-clavulanic acid and dogs showed susceptible to ciprofloxacin were kept in Group 2 and treated with ciprofloxacin along with urinary alkalizer disodium hydrogen citrate. Nitrofurantoin susceptible cases were kept in Group 3 and treated with a combination of nitrofurantoin and urinary acidifier ammonium chloride. Therapeutic outcome was evaluated and success rate was higher in Group 2 and 3 than Group 1 suggested that selection of antibiotics with the use of local or institutional antibiogram data is more considerate than acknowledged international guidelines in the existing situation.

2.
Braz J Microbiol ; 55(1): 997-1010, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311710

RESUMEN

The swine industry across the globe is recently facing a devastating situation imparted by a highly contagious and deadly viral disease, African swine fever. The disease is caused by a DNA virus, the African swine fever virus (ASFV) of the genus Asfivirus. ASFV affects both wild boars and domestic pigs resulting in an acute form of hemorrhagic fever. Since the first report in 1921, the disease remains endemic in some of the African countries. However, the recent occurrence of ASF outbreaks in Asia led to a fresh and formidable challenge to the global swine production industry. Culling of the infected animals along with the implementation of strict sanitary measures remains the only options to control this devastating disease. Efforts to develop an effective and safe vaccine against ASF began as early as in the mid-1960s. Different approaches have been employed for the development of effective ASF vaccines including inactivated vaccines, subunit vaccines, DNA vaccines, virus-vectored vaccines, and live attenuated vaccines (LAVs). Inactivated vaccines are a non-feasible strategy against ASF due to their inability to generate a complete cellular immune response. However genetically engineered vaccines, such as subunit vaccines, DNA vaccines, and virus vector vaccines, represent tailored approaches with minimal adverse effects and enhanced safety profiles. As per the available data, gene deleted LAVs appear to be the most potential vaccine candidates. Currently, a gene deleted LAV (ASFV-G-∆I177L), developed in Vietnam, stands as the sole commercially available vaccine against ASF. The major barrier to the goal of developing an effective vaccine is the critical gaps in the knowledge of ASFV biology and the immune response induced by ASFV infection. The precise contribution of various hosts, vectors, and environmental factors in the virus transmission must also be investigated in depth to unravel the disease epidemiology. In this review, we mainly focus on the recent progress in vaccine development against ASF and the major gaps associated with it.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vacunas de ADN , Vacunas Virales , Porcinos , Animales , Fiebre Porcina Africana/prevención & control , Fiebre Porcina Africana/epidemiología , Virus de la Fiebre Porcina Africana/genética , Vacunas de ADN/genética , Sus scrofa , Vacunas Virales/genética , Vacunas Atenuadas/genética , Desarrollo de Vacunas , Vacunas de Productos Inactivados , Vacunas de Subunidad
3.
Int. microbiol ; 27(1): 101-111, Feb. 2024. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-230247

RESUMEN

Brucella abortus and Brucella melitensis are the primary etiological agents of brucellosis in large and small ruminants, respectively. There are limited comparative genomic studies involving Brucella strains that explore the relatedness among both species. In this study, we involved strains (n=44) representing standard, vaccine and Indian field origin for pangenome, single nucleotide polymorphism (SNP) and phylogenetic analysis. Both species shared a common gene pool representing 2884 genes out of a total 3244 genes. SNP-based phylogenetic analysis indicated higher SNP diversity among B. melitensis (3824) strains in comparison to B. abortus (540) strains, and a clear demarcation was identified between standard/vaccine and field strains. The analysis for virulence genes revealed that virB3, virB7, ricA, virB5, ipx5, wbkC, wbkB, and acpXL genes were highly conserved in most of the Brucella strains. Interestingly, virB10 gene was found to have high variability among the B. abortus strains. The cgMLST analysis revealed distinct sequence types for the standard/vaccine and field strains. B. abortus strains from north-eastern India fall within similar sequence type differing from other strains. In conclusion, the analysis revealed a highly shared core genome among two Brucella species. SNP analysis revealed B. melitensis strains exhibit high diversity as compared to B. abortus strains. Strains with absence or high polymorphism of virulence genes can be exploited for the development of novel vaccine candidates effective against both B. abortus and B. melitensis.(AU)


Asunto(s)
Humanos , Factores de Virulencia , Brucella melitensis/genética , Brucella abortus/genética , Genómica , Filogenia , Polimorfismo de Nucleótido Simple , Microbiología , Técnicas Microbiológicas , Vacunas
4.
Braz J Microbiol ; 55(1): 969-979, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233640

RESUMEN

Salmonella is an important poultry pathogen with zoonotic potential. Being a foodborne pathogen, Salmonella-contaminated poultry products can act as the major source of infection in humans. In India, limited studies have addressed the diversity of Salmonella strains of poultry origin. This study represented 26 strains belonging to Salmonella serovars Typhimurium, Infantis, Virchow, Kentucky, and Agona. The strains were tested for resistance to 14 different antimicrobial agents using the Kirby-Bauer disk-diffusion assay. The presence of the invA, hilA, agfA, lpfA, sopE, and spvC virulence genes was assessed by polymerase chain reaction (PCR), and the genetic diversity was assessed by Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR). The highest resistance to tetracycline (n = 17; 65.38%) followed by nalidixic acid (n = 16; 61.53%) was detected among the strains. Among the strains (n = 17) phenotypically resistant to tetracycline, 94% (n = 16) were also positive for the tetA gene. Based on the presence of virulence genes, the strains were characterized into three virulence profiles (PI, P2, and P3). Among the investigated virulence genes, invA, hilA, agfA, and lpfA were present in all strains. The sopE gene was mostly associated with serovars Virchow (n = 3; 100%) and Typhimurium (n = 8; 80%), whereas spvC gene was exclusive for two Typhimurium strains that lacked sopE gene. ERIC-PCR profiling indicated clusters correlating their serovar, geographical, and farm origins. These results demonstrate that Salmonella isolates with a wide genetic range, antibiotic resistance, and virulence characteristics can colonize poultry. The presence of such strains is crucial for both food safety and public health.


Asunto(s)
Salmonella enterica , Animales , Humanos , Aves de Corral/microbiología , Virulencia/genética , Serogrupo , Salmonella typhimurium , Farmacorresistencia Bacteriana Múltiple/genética , Tetraciclinas , Antibacterianos/farmacología
5.
Int Microbiol ; 27(1): 101-111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37202587

RESUMEN

Brucella abortus and Brucella melitensis are the primary etiological agents of brucellosis in large and small ruminants, respectively. There are limited comparative genomic studies involving Brucella strains that explore the relatedness among both species. In this study, we involved strains (n=44) representing standard, vaccine and Indian field origin for pangenome, single nucleotide polymorphism (SNP) and phylogenetic analysis. Both species shared a common gene pool representing 2884 genes out of a total 3244 genes. SNP-based phylogenetic analysis indicated higher SNP diversity among B. melitensis (3824) strains in comparison to B. abortus (540) strains, and a clear demarcation was identified between standard/vaccine and field strains. The analysis for virulence genes revealed that virB3, virB7, ricA, virB5, ipx5, wbkC, wbkB, and acpXL genes were highly conserved in most of the Brucella strains. Interestingly, virB10 gene was found to have high variability among the B. abortus strains. The cgMLST analysis revealed distinct sequence types for the standard/vaccine and field strains. B. abortus strains from north-eastern India fall within similar sequence type differing from other strains. In conclusion, the analysis revealed a highly shared core genome among two Brucella species. SNP analysis revealed B. melitensis strains exhibit high diversity as compared to B. abortus strains. Strains with absence or high polymorphism of virulence genes can be exploited for the development of novel vaccine candidates effective against both B. abortus and B. melitensis.


Asunto(s)
Brucella melitensis , Vacunas , Brucella melitensis/genética , Brucella abortus/genética , Factores de Virulencia/genética , Polimorfismo de Nucleótido Simple , Filogenia , Genómica
6.
Comp Immunol Microbiol Infect Dis ; 104: 102100, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043450

RESUMEN

Microsporum canis is considered the common dermatophyte agent associated with ringworm in felines and canines. In the present study, we sampled n = 548 felines and canines for the probable isolation of M. canis. The rate of isolation from the cats and dogs was 70.27 % (52/74) and 1.68 % (8/474), respectively and Persian cats were found to be highly susceptible to M. canis infection. The strains were evaluated for their production of phospholipase, lipase, catalase, and hemolysis and their ability to grow at 35 â„ƒ. All the strains were identified as low producers of catalase and n = 17 strains exhibited high thermotolerance ability. Terbinafine was found to be the most effective antifungal drug and fluconazole was the least effective, in vitro. AFLP analysis revealed three genotypes of M. canis with 15 sub-clusters showing ≥ 90 % similarity and 7 sub-clusters exhibiting 100 % similarity. However, the phenotypic characters cannot be attributed based on the AFLP profiles.


Asunto(s)
Enfermedades de los Gatos , Dermatomicosis , Enfermedades de los Perros , Animales , Gatos , Perros , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Catalasa/farmacología , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/microbiología , Dermatomicosis/veterinaria , Dermatoglifia del ADN/veterinaria , Enfermedades de los Gatos/microbiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/veterinaria , Enfermedades de los Perros/microbiología , Microsporum/genética
7.
Braz J Microbiol ; 54(1): 509-521, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36437438

RESUMEN

Keratinophilic fungi are mostly soil-inhabiting organisms with occasional infections in humans and animals. Even though most dermatophytes are host-adapted, cross-species infections are common by zoophilic and geophilic dermatophytes. N. nana is considered an etiological agent of ringworm in pigs but has also been isolated from other animals, including humans. However, it also possesses many characteristics of geophilic dermatophytes including the ability to grow in soil. N. nana produces characteristic pear-shaped macroconidia and usually exhibits an ectothrix pattern of hair infection. It has been isolated from dermatitis lesions as well as from soil. N. nana infections in pigs are not of much concern as far as economy or health is concerned. But it has been associated with onychomycosis and gonathritis in humans, which are significant in human medicine. The shift in the predominance of dermatophytes in humans and the ability to evolve into a potential tinea pathogen necessitates more understanding of the physiology and genetics of N. nana. In this review, we have attempted a detailed analysis of the studies about N. nana, emphasizing growth and cultural characters, physiology, isolation, infection in humans and animals, molecular characterization and antifungal susceptibility.


Asunto(s)
Arthrodermataceae , Infección Hospitalaria , Dermatomicosis , Onicomicosis , Humanos , Animales , Porcinos , Dermatomicosis/microbiología , Antifúngicos
8.
J Mycol Med ; 33(1): 101352, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36459816

RESUMEN

Dermatophytes are keratinophilic fungi that cause skin infections in both humans and animals. Recently, the incidence rates of fungal infections associated with Trichophyton spp. have been considered endemic in many locations. The aim of this study was to isolate and characterize Trichophyton spp. from canines and felines. In the present study, screened 442 canine (n = 386) and feline (n = 56) samples for dermatophytes. Among all the samples, ten isolates were identified as Trichophyton spp. based on micro-morphological features. For comparative analysis, we included three human strains of Trichophyton mentagrophytes complex. In vitro susceptibility of antifungal drugs indicated the highest sensitivity except for fluconazole. The canine and human strains were genetically characterized by sequencing three genes: the internal transcribed spacer region of rDNA, translation elongation factor 1- gene, and beta-tubulin. Based on sequence homology and phylogenetic analysis, the ten canine strains belonged to four different species/ genotypes such as T. mentagrophytes genotype VIII (T. indotineae) (n = 5), T. interdigitale (n = 2), T. simii (n = 2) and T. quinckeanum (n = 1). The three human strains used for comparative analysis were identified as T. mentagrophytes genotype VIII (n = 2) and T. benhamiae (n = 1). The study hence indicates that the T. mentagrophytes genotype VIII, considered as an endemic and emerging human pathogenic clone in India, is also the prevalent in animals.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Animales , Gatos , Perros , Humanos , Filogenia , Epidemiología Molecular , Análisis de Secuencia de ADN , Enfermedades de los Perros/epidemiología , Trichophyton , ADN de Hongos/genética
9.
Mol Biol Rep ; 48(4): 3195-3203, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33954903

RESUMEN

Salmonella Typhimurium survives and replicates inside the oxidative environment of phagocytic cells. Proteins, because of their composition and location, are the foremost targets of host inflammatory response. Among others, Met-residues are highly prone to oxidation. Methionine sulfoxide reductase (Msr), with the help of thioredoxin-thioredoxin reductase, can repair oxidized methionine (Met-SO) residues to Met. There are four methionine sulfoxide reductases localized in the cytosol of S. Typhimurium, MsrA, MsrB, MsrC and BisC. MsrA repairs both protein-bound and free 'S' Met-SO, MsrB repairs protein-bound 'R' Met-SO, MsrC repairs free 'R' Met-SO and BisC repairs free 'S' Met-SO. To assess the role(s) of various Msrs in Salmonella, few studies have been conducted by utilizing ΔmsrA, ΔmsrB, ΔmsrC, ΔmsrAΔmsrB, ΔmsrBΔmsrC and ΔbisC mutant strains of S. Typhimurium. Out of the above-mentioned mutants, ΔmsrA and ΔmsrC were found to play important role in the stress survival of this bacterium; however, the combined roles of these two genes have not been determined. In the current study, we have generated msrAmsrC double gene deletion strain (ΔmsrAΔmsrC) of S. Typhimurium and evaluated the effect of gene deletions on the survival of Salmonella against hypochlorite stress and intramacrophage replication. In in vitro growth curve analysis, ΔmsrAΔmsrC mutant strain showed a longer lag phase during the initial stages of the growth; however, it attained similar growth as the wild type strain of S. Typhimurium after 5 h. The ΔmsrAΔmsrC mutant strain has been highly (~ 3000 folds more) sensitive (p < 0.001) to hypochlorite stress. Further, ΔmsrA and ΔmsrAΔmsrC mutant strains showed more than 8 and 26 folds more susceptibility to poultry macrophages, respectively. Our data suggest that the deletion of both msrA and msrC genes severely affect the oxidative stress survival and intramacrophage proliferation of S. Typhimurium.


Asunto(s)
Metionina Sulfóxido Reductasas/genética , Salmonella typhimurium/genética , Animales , Eliminación de Gen , Genes Bacterianos , Ácido Hipocloroso/farmacología , Técnicas In Vitro , Macrófagos/inmunología , Macrófagos/microbiología , Estrés Oxidativo/efectos de los fármacos , Aves de Corral , Salmonella typhimurium/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...