Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Nat Commun ; 15(1): 3777, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710683

RESUMEN

Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful method for profiling complex biological samples. However, batch effects typically arise from differences in sample processing protocols, experimental conditions, and data acquisition techniques, significantly impacting the interpretability of results. Correcting batch effects is crucial for the reproducibility of omics research, but current methods are not optimal for the removal of batch effects without compressing the genuine biological variation under study. We propose a suite of Batch Effect Removal Neural Networks (BERNN) to remove batch effects in large LC-MS experiments, with the goal of maximizing sample classification performance between conditions. More importantly, these models must efficiently generalize in batches not seen during training. A comparison of batch effect correction methods across five diverse datasets demonstrated that BERNN models consistently showed the strongest sample classification performance. However, the model producing the greatest classification improvements did not always perform best in terms of batch effect removal. Finally, we show that the overcorrection of batch effects resulted in the loss of some essential biological variability. These findings highlight the importance of balancing batch effect removal while preserving valuable biological diversity in large-scale LC-MS experiments.


Asunto(s)
Espectrometría de Masas , Redes Neurales de la Computación , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Humanos , Reproducibilidad de los Resultados , Cromatografía Líquida con Espectrometría de Masas
2.
J Proteomics ; 297: 105109, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325732

RESUMEN

To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Proteoma/metabolismo , Tripsina/química , Espectrometría de Masas en Tándem/métodos , Péptidos/química , Digestión
3.
Sci Adv ; 9(49): eadg2615, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055821

RESUMEN

Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. We performed multiregional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry and then integrated these data with complementary glycotranscriptomic data. We found that, in primates, the brain N-glycome has diverged more rapidly than the underlying transcriptomic framework, providing a means for rapidly generating additional interspecies diversity. Our data suggest that brain N-glycome evolution in hominids has been characterized by an overall increase in complexity coupled with a shift toward increased usage of α(2-6)-linked N-acetylneuraminic acid. Moreover, interspecies differences in the cell type expression pattern of key glycogenes were identified, including some human-specific differences, which may underpin this evolutionary divergence. Last, by comparing the prenatal and adult human brain N-glycomes, we uncovered region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain.


Asunto(s)
Encéfalo , Adulto , Humanos , Ratas , Animales , Glicosilación , Espectrometría de Masas
4.
Sci Rep ; 13(1): 22406, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104170

RESUMEN

Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disorder with contributions from multiple pathophysiological pathways. One of the long-recognized and important features of AD is disrupted cerebral glucose metabolism, but the underlying molecular basis remains unclear. In this study, unbiased mass spectrometry was used to survey CSF from a large clinical cohort, comparing patients who are either cognitively unimpaired (CU; n = 68), suffering from mild-cognitive impairment or dementia from AD (MCI-AD, n = 95; DEM-AD, n = 72), or other causes (MCI-other, n = 77; DEM-other, n = 23), or Normal Pressure Hydrocephalus (NPH, n = 57). The results revealed changes related to altered glucose metabolism. In particular, two glycolytic enzymes, pyruvate kinase (PKM) and aldolase A (ALDOA), were found to be upregulated in CSF from patients with AD compared to those with other neurological conditions. Increases in full-length PKM and ALDOA levels in CSF were confirmed with immunoblotting. Levels of these enzymes furthermore correlated negatively with CSF glucose in matching CSF samples. PKM levels were also found to be increased in AD in publicly available brain-tissue data. These results indicate that ALDOA and PKM may act as technically-robust potential biomarkers of glucose metabolism dysregulation in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Hidrocéfalo Normotenso , Humanos , Enfermedad de Alzheimer/psicología , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/psicología , Espectrometría de Masas , Glucólisis , Glucosa , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
5.
Alzheimers Dement (N Y) ; 9(4): e12431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915375

RESUMEN

Introduction: Current approaches for treating sporadic Alzheimer's disease (sAD) focus on removal of amyloid beta 1-42 (Aß1-42) or phosphorylated tau, but additional strategies are needed to reduce neuropathology at earlier stages prior to neuronal damage. Longstanding data show that calcium dysregulation is a key etiological factor in sAD, and the cortical neurons most vulnerable to tau pathology show magnified calcium signaling, for example in dorsolateral prefrontal cortex (dlPFC) and entorhinal cortex (ERC). In primate dlPFC and ERC, type 3 metabotropic glutamate receptors (mGluR3s) are predominately post-synaptic, on spines, where they regulate cAMP-calcium signaling, a process eroded by inflammatory glutamate carboxypeptidase II (GCPII) actions. The current study tested whether enhancing mGluR3 regulation of calcium via chronic inhibition of GCPII would reduce tau hyperphosphorylation in aged macaques with naturally-occurring tau pathology. Methods: Aged rhesus macaques were treated daily with the GCPII inhibitor, 2-MPPA (2-3-mercaptopropyl-penanedioic acid (2-MPPA)),Aged rhesus macaques were treated daily with the GCPII inhibitor, 2-MPPA (2-3-mercaptopropyl-penanedioic acid (2-MPPA)). Results: Aged macaques that received 2-MPPA had significantly lower pT217Tau levels in dlPFC and ERC, and had lowered plasma pT217Tau levels from baseline. pT217Tau levels correlated significantly with GCPII activity in dlPFC. Both 2-MPPA- and vehicle-treated monkeys showed cognitive improvement; 2-MPPA had no apparent side effects. Exploratory CSF analyses indicated reduced pS202Tau with 2-MPPA administration, confirmed in dlPFC samples. Discussion: These data provide proof-of-concept support that GCPII inhibition can reduce tau hyperphosphorylation in the primate cortices most vulnerable in sAD. GCPII inhibition may be particularly helpful in reducing the risk of sAD caused by inflammation. These data in nonhuman primates should encourage future research on this promising mechanism. Highlights: Inflammation is a key driver of sporadic Alzheimer's disease.GCPII inflammatory signaling in brain decreases mGluR3 regulation of calcium.Chronic inhibition of GCPII inflammatory signaling reduced pT217Tau in aged monkeys.GCPII inhibition is a novel strategy to help prevent tau pathology at early stages.

6.
Biol Psychiatry ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37579933

RESUMEN

BACKGROUND: Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS: Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

7.
Res Sq ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37461556

RESUMEN

Background: Alzheimer's disease (AD) is a complex heterogenous neurodegenerative disorder, characterized by multiple pathophysiologies, including disruptions in brain metabolism. Defining markers for patient stratification across these pathophysiologies is an important step towards personalized treatment of AD. Efficient brain glucose metabolism is essential to sustain neuronal activity, but hypometabolism is consistently observed in AD. The molecular changes underlying these observations remain unclear. Recent studies have indicated dysregulation of several glycolysis markers in AD cerebrospinal fluid and tissue. Methods: In this study, unbiased mass spectrometry was used to perform a deep proteomic survey of cerebrospinal fluid (CSF) from a large-scale clinically complex cohort to uncover changes related to impaired glucose metabolism. Results: Two glycolytic enzymes, Pyruvate kinase (PKM) and Aldolase A (ALDOA) were found to be specifically upregulated in AD CSF compared to other non-AD groups. Presence of full-length protein of these enzymes in CSF was confirmed through immunoblotting. Levels of tryptic peptides of these enzymes correlated significantly with CSF glucose and CSF lactate in matching CSF samples. Conclusions: The results presented here indicate a general dysregulation of glucose metabolism in the brain in AD. We highlight two markers ALDOA and PKM that may act as potential functionally-relevant biomarkers of glucose metabolism dysregulation in AD.

8.
J Proteome Res ; 22(7): 2377-2390, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37311105

RESUMEN

Substance use disorders are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based quantitative proteomics, along with a data-independent acquisition analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveal cocaine and morphine differentially alter diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between the phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome. The proteomics data in this study are available via ProteomeXchange with identifier PXD042043.


Asunto(s)
Cocaína , Ratones , Animales , Cocaína/farmacología , Núcleo Accumbens/metabolismo , Morfina/farmacología , Morfina/metabolismo , Proteoma/genética , Proteoma/metabolismo , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología
9.
Front Cell Neurosci ; 17: 1143319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153634

RESUMEN

In addition to neuronal migration, brain development, and adult plasticity, the extracellular matrix protein Reelin has been extensively implicated in human psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. Moreover, heterozygous reeler mice exhibit features reminiscent of these disorders, while overexpression of Reelin protects against its manifestation. However, how Reelin influences the structure and circuits of the striatal complex, a key region for the above-mentioned disorders, is far from being understood, especially when altered Reelin expression levels are found at adult stages. In the present study, we took advantage of complementary conditional gain- and loss-of-function mouse models to investigate how Reelin levels may modify adult brain striatal structure and neuronal composition. Using immunohistochemical techniques, we determined that Reelin does not seem to influence the striatal patch and matrix organization (studied by µ-opioid receptor immunohistochemistry) nor the density of medium spiny neurons (MSNs, studied with DARPP-32). We show that overexpression of Reelin leads to increased numbers of striatal parvalbumin- and cholinergic-interneurons, and to a slight increase in tyrosine hydroxylase-positive projections. We conclude that increased Reelin levels might modulate the numbers of striatal interneurons and the density of the nigrostriatal dopaminergic projections, suggesting that these changes may be involved in the protection of Reelin against neuropsychiatric disorders.

10.
Commun Biol ; 6(1): 381, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031277

RESUMEN

Recent technological advances have opened the door to single-cell proteomics that can answer key biological questions regarding how protein expression, post-translational modifications, and protein interactions dictate cell state in health and disease.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica
11.
World J Biol Psychiatry ; 24(7): 603-613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994633

RESUMEN

BACKGROUND: Rates of Cannabis Use Disorder (CUD) are highest amongst young adults. Paucity of brain tissue samples limits the ability to examine the molecular basis of cannabis related neuropathology. Proteomic studies of neuron-derived extracellular vesicles (NDEs) isolated from the biofluids may reveal markers of neuropathology in CUD. METHODS: NDEs were extracted using ExoSORT, an immunoaffinity method to enrich NDEs from plasma samples from patients with young onset CUD and matched controls. Differential proteomic profiles were explored with Label Free Quantification (LFQ) mass spectrometry. Selected proteins were validated using orthogonal methods. RESULTS: A total of 231 (±10) proteins were identified in NDE preparations from CUD and controls of which 28 were differentially abundant between groups. The difference in abundance of properdin (CFP gene) was statistically significant. SHANK1 (SHANK1 gene), an adapter protein at the post-synaptic density, was nominally depleted in the CUD NDE preparations. CONCLUSION: In this pilot study, we noted a decrease in SHANK1 protein, involved in the structural and functional integrity of glutamatergic post-synapse, a potential peripheral signature of CUD neuropathology. The study shows that LFQ mass spectrometry proteomic analysis of NDEs derived from plasma may yield important insights into the synaptic pathology associated with CUD.


Asunto(s)
Vesículas Extracelulares , Abuso de Marihuana , Trastornos Relacionados con Sustancias , Adulto Joven , Humanos , Proyectos Piloto , Proteómica
12.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909659

RESUMEN

Substance use disorders (SUDs) are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based (LC-MS/MS) quantitative proteomics, along with a data-independent acquisition (DIA) analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveals cocaine and morphine differentially alters diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome.

13.
bioRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945487

RESUMEN

BACKGROUND: Highly palatable food triggers behavioral alterations reminiscent of those induced by addictive drugs. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral effects and dendritic spine modifications in the NAc. We compared the translating mRNA in NAc neurons identified by the type of dopamine receptors they express, depending on the type of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn (Neurochondrin). RESULTS: Operant conditioning for highly palatable food increases motivation for food even in well-fed mice. In control mice, free access to regular or highly palatable food results in increased weight as compared to regular food only. Highly palatable food increases spine density in the NAc. In animals trained for highly palatable food, translating mRNAs are modified in NAc dopamine D2-receptor-expressing neurons, mostly corresponding to striatal projection neurons, but not in those expressing D1-receptors. Knock-out of Ncdn, an abundant down-regulated gene, opposes the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting down-regulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of mRNA alterations D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

14.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747779

RESUMEN

Protein phosphatase 1 (PP1) regulates synaptic plasticity and has been described as a molecular constraint on learning and memory. There are three neuronal isoforms, PP1α, PP1ß, and PP1γ, but little is known about their individual functions. PP1α and PP1γ are assumed to mediate the effects of PP1 on learning and memory based on their enrichment at dendritic spines and their preferential binding to neurabin and spinophilin, major PP1 synaptic scaffolding proteins. However, it was recently discovered that human de novo PP1ß mutations cause intellectual disability, suggesting an important but ill-defined role for PP1ß. In this study, we investigated the functions of each PP1 isoform in hippocampal synaptic physiology using conditional CA1-specific knockout mice. In stark contrast to classic PP1 function, we found that PP1ß promotes synaptic plasticity as well as spatial memory. These changes in synaptic plasticity and memory are accompanied by changes in GluA1 phosphorylation, GluN2A levels, and dendritic spine density and morphology, including silent synapse number. These functions of PP1ß reveal a previously unidentified signaling pathway regulating spine maturation and plasticity, broadening our understanding of the complex role of PP1 in synaptic physiology.

15.
Neurochem Int ; 162: 105438, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351540

RESUMEN

Dopamine regulates psychomotor function by D1 receptor/PKA-dependent phosphorylation of DARPP-32. DARPP-32, phosphorylated at Thr34 by PKA, inhibits protein phosphatase 1 (PP1), and amplifies the phosphorylation of other PKA/PP1 substrates following D1 receptor activation. In addition to the D1 receptor/PKA/DARPP-32 signaling pathway, D1 receptor stimulation is known to activate Rap1/ERK signaling. Rap1 activation is mediated through the phosphorylation of Rasgrp2 (guanine nucleotide exchange factor; activation) and Rap1gap (GTPase-activating protein; inhibition) by PKA. In this study, we investigated the role of PP1 inhibition by phospho-Thr34 DARPP-32 in the D1 receptor-induced phosphorylation of Rasgrp2 and Rap1gap at PKA sites. The analyses in striatal and NAc slices from wild-type and DARPP-32 knockout mice revealed that the phosphorylation of Rasgrp2 at Ser116/Ser117 and Ser586, but not of Rasgrp2 at Ser554 or Rap1gap at Ser441 or Ser499 induced by a D1 receptor agonist, is under the control of the DARPP-32/PP1. The results were supported by pharmacological analyses using a selective PP1 inhibitor, tautomycetin. In addition, analyses using a PP1 and PP2A inhibitor, okadaic acid, revealed that all sites of Rasgrp2 and Rap1gap were regulated by PP2A. Thus, the interactive machinery of DARPP-32/PP1 may contribute to efficient D1 receptor signaling via Rasgrp2/Rap1 in the striatum.


Asunto(s)
Cuerpo Estriado , Neostriado , Animales , Ratones , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/farmacología , Cuerpo Estriado/metabolismo , Neostriado/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Transducción de Señal , Fosforilación , Receptores de Dopamina D1/metabolismo
16.
Mol Cell Proteomics ; 21(11): 100422, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198386

RESUMEN

Cellular biomolecular complexes including protein-protein, protein-RNA, and protein-DNA interactions regulate and execute most biological functions. In particular in brain, protein-protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell-cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte-neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.


Asunto(s)
Comunicación Celular , Proteoma , Biotinilación , Sinapsis , Encéfalo
17.
Front Synaptic Neurosci ; 14: 1021832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276179

RESUMEN

Inhibitor-2 (I-2) is a prototypic inhibitor of protein phosphatase-1 (PP1), a major serine-threonine phosphatase that regulates synaptic plasticity and learning and memory. Although I-2 is a potent inhibitor of PP1 in vitro, our previous work has elucidated that, in vivo, I-2 may act as a positive regulator of PP1. Here we show that I-2 and PP1γ, but not PP1α, positively regulate synaptic transmission in hippocampal neurons. Moreover, we demonstrated that I-2 enhanced PP1γ interaction with its major synaptic scaffold, neurabin, by Förster resonance energy transfer (FRET)/Fluorescence lifetime imaging microscopy (FLIM) studies, while having a limited effect on PP1 auto-inhibitory phosphorylation. Furthermore, our study indicates that the effect of I-2 on PP1 activity in vivo is dictated by I-2 threonine-72 phosphorylation. Our work thus demonstrates a molecular mechanism by which I-2 positively regulates PP1 function in synaptic transmission.

18.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067316

RESUMEN

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Asunto(s)
Corteza Cerebral , Proteínas del Tejido Nervioso , Neuronas , Proteína Reelina , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Neuronas GABAérgicas/enzimología , Hipocampo/embriología , Hipocampo/enzimología , Interneuronas/enzimología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/enzimología , Proteína Reelina/genética , Proteína Reelina/metabolismo
19.
J Biol Chem ; 298(9): 102296, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872014

RESUMEN

Cardiac muscle myosin regulatory light chain (RLC) is constitutively phosphorylated at ∼0.4 mol phosphate/mol RLC in normal hearts, and phosphorylation is maintained by balanced activities of dedicated cardiac muscle-specific myosin light chain kinase and myosin light chain phosphatase (MLCP). Previously, the identity of the cardiac-MLCP was biochemically shown to be similar to the smooth muscle MLCP, which is a well-characterized trimeric protein comprising the regulatory subunit (MYPT1), catalytic subunit PP1cß, and accessory subunit M20. In smooth muscles in vivo, MYPT1 and PP1cß co-stabilize each other and are both necessary for normal smooth muscle contractions. In the cardiac muscle, MYPT1 and MYPT2 are both expressed, but contributions to physiological regulation of cardiac myosin dephosphorylation are unclear. We hypothesized that the main catalytic subunit for cardiac-MLCP is PP1cß, and maintenance of RLC phosphorylation in vivo is dependent on regulation by striated muscle-specific MYPT2. Here, we used PP1cß conditional knockout mice to biochemically define cardiac-MLCP proteins and developed a cardiac myofibrillar phosphatase assay to measure the direct contribution of MYPT-regulated and MYPT-independent phosphatase activities toward phosphorylated cardiac myosin. We report that (1) PP1cß is the main isoform expressed in the cardiac myocyte, (2) cardiac muscle pathogenesis in PP1cß knockout animals involve upregulation of total PP1cα in myocytes and non-muscle cells, (3) the stability of cardiac MYPT1 and MYPT2 proteins in vivo is not dependent on the PP1cß expression, and (4) phosphorylated myofibrillar cardiac myosin is dephosphorylated by both myosin-targeted and soluble MYPT-independent PP1cß activities. These results contribute to our understanding of the cardiac-MLCP in vivo.


Asunto(s)
Miosinas Cardíacas , Fosfatasa de Miosina de Cadena Ligera , Proteína Fosfatasa 1 , Animales , Miosinas Cardíacas/metabolismo , Ratones , Ratones Noqueados , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosfatos/metabolismo , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
20.
Mol Psychiatry ; 27(4): 2068-2079, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35177825

RESUMEN

Forebrain dopamine-sensitive (dopaminoceptive) neurons play a key role in movement, action selection, motivation, and working memory. Their activity is altered in Parkinson's disease, addiction, schizophrenia, and other conditions, and drugs that stimulate or antagonize dopamine receptors have major therapeutic applications. Yet, similarities and differences between the various neuronal populations sensitive to dopamine have not been systematically explored. To characterize them, we compared translating mRNAs in the dorsal striatum and nucleus accumbens neurons expressing D1 or D2 dopamine receptor and prefrontal cortex neurons expressing D1 receptor. We identified genome-wide cortico-striatal, striatal D1/D2 and dorso/ventral differences in the translating mRNA and isoform landscapes, which characterize dopaminoceptive neuronal populations. Expression patterns and network analyses identified novel transcription factors with presumptive roles in these differences. Prostaglandin E2 (PGE2) was a candidate upstream regulator in the dorsal striatum. We pharmacologically explored this hypothesis and showed that misoprostol, a PGE2 receptor agonist, decreased the excitability of D2 striatal projection neurons in slices, and diminished their activity in vivo during novel environment exploration. We found that misoprostol also modulates mouse behavior including by facilitating reversal learning. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns and regulation. It also reveals the unforeseen role of PGE2 in the striatum as a potential neuromodulator and an attractive therapeutic target.


Asunto(s)
Dinoprostona , Misoprostol , Animales , Cuerpo Estriado/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Exones , Expresión Génica , Ratones , Misoprostol/metabolismo , Misoprostol/farmacología , ARN Mensajero/metabolismo , Receptores de Dopamina D1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...