Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Pharm ; : 124403, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944167

RESUMEN

Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.

2.
Biomolecules ; 14(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38927114

RESUMEN

Incidences of drug-resistant tuberculosis have become common and are rising at an alarming rate. Aminoacyl t-RNA synthetase has been validated as a newer target against Mycobacterium tuberculosis. Leucyl t-RNA synthetase (LeuRS) is ubiquitously found in all organisms and regulates transcription, protein synthesis, mitochondrial RNA cleavage, and proofreading of matured t-RNA. Leucyl t-RNA synthetase promotes growth and development and is the key enzyme needed for biofilm formation in Mycobacterium. Inhibition of this enzyme could restrict the growth and development of the mycobacterial population. A database consisting of 2734 drug-like molecules was screened against leucyl t-RNA synthetase enzymes through virtual screening. Based on the docking scores and MMGBSA energy values, the top three compounds were selected for molecular dynamics simulation. The druggable nature of the top three hits was confirmed by predicting their pharmacokinetic parameters. The top three hits-compounds 1035 (ZINC000001543916), 1054 (ZINC000001554197), and 2077 (ZINC000008214483)-were evaluated for their binding affinity toward leucyl t-RNA synthetase by an isothermal titration calorimetry study. The inhibitory activity of these compounds was tested against antimycobacterial activity, biofilm formation, and LeuRS gene expression potential. Compound 1054 (Macimorelin) was found to be the most potent molecule, with better antimycobacterial activity, enzyme binding affinity, and significant inhibition of biofilm formation, as well as inhibition of the LeuRS gene expression. Compound 1054, the top hit compound, has the potential to be used as a lead to develop successful leucyl t-RNA synthetase inhibitors.


Asunto(s)
Antituberculosos , Inhibidores Enzimáticos , Leucina-ARNt Ligasa , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Ligandos , Antituberculosos/farmacología , Antituberculosos/química , Leucina-ARNt Ligasa/antagonistas & inhibidores , Leucina-ARNt Ligasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Calorimetría , Simulación de Dinámica Molecular , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Simulación por Computador , Unión Proteica , Humanos
3.
Nanomedicine (Lond) ; 19(12): 1069-1085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38661738

RESUMEN

Aim: The study was designed to develop and analyze curcumin nanoparticles. Methods: Curcumin nanoparticles were formulated and evaluated. Their efficacy in protecting against brain damage was investigated in a rat model of ischemic stroke, considering motor function, muscle strength and antioxidant enzyme activity. Results: Curcumin nanoparticles displayed a zeta potential of -55 ± 13.5 mV and an average particle size of 51.40 ± 21.70 nm. In ischemic stroke rat models, curcumin nanoparticle treatment significantly improved motor functions, and muscle strength and increased the activities of antioxidant enzymes like glutathione peroxidase, glutathione, glutathione S-transferase, superoxide dismutase and catalase, reducing oxidative stress and inflammation. Conclusion: Curcumin nanoparticles showed significant neuroprotective effects in ischemic stroke models.


[Box: see text].


Asunto(s)
Antioxidantes , Curcumina , Modelos Animales de Enfermedad , Inflamación , Accidente Cerebrovascular Isquémico , Estrés Oxidativo , Animales , Curcumina/farmacología , Curcumina/química , Estrés Oxidativo/efectos de los fármacos , Ratas , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Masculino , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Tamaño de la Partícula , Nanogeles/química , Fármacos Neuroprotectores/farmacología , Superóxido Dismutasa/metabolismo , Ratas Wistar , Polietilenglicoles/química , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo
4.
Front Immunol ; 15: 1383456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660299

RESUMEN

The programmed death-1 receptor (PD-1) acts as a T-cell brake, and its interaction with ligand-1 (PD-L-1) interferes with signal transduction of the T-cell receptor. This leads to suppression of T-cell survival, proliferation, and activity in the tumor microenvironment resulting in compromised anticancer immunity. PD-1/PD-L-1 interaction blockade shown remarkable clinical success in various cancer immunotherapies. To date, most PD-1/PD-L-1 blockers approved for clinical use are monoclonal antibodies (mAbs); however, their therapeutic use are limited owing to poor clinical responses in a proportion of patients. mAbs also displayed low tumor penetration, steep production costs, and incidences of immune-related side effects. This strongly indicates the importance of developing novel inhibitors as cancer immunotherapeutic agents. Recently, advancements in the small molecule-based inhibitors (SMIs) that directly block the PD-1/PD-L-1 axis gained attention from the scientific community involved in cancer research. SMIs demonstrated certain advantages over mAbs, including longer half-lives, low cost, greater cell penetration, and possibility of oral administration. Currently, several SMIs are in development pipeline as potential therapeutics for cancer immunotherapy. To develop new SMIs, a wide range of structural scaffolds have been explored with excellent outcomes; biphenyl-based scaffolds are most studied. In this review, we analyzed the development of mAbs and SMIs targeting PD-1/PD-L-1 axis for cancer treatment. Altogether, the present review delves into the problems related to mAbs use and a detailed discussion on the development and current status of SMIs. This article may provide a comprehensive guide to medicinal chemists regarding the potential structural scaffolds required for PD-1/PD-L-1 interaction inhibition.


Asunto(s)
Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Animales , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Anticuerpos Monoclonales/uso terapéutico
5.
Acta Pharm ; 74(1): 1-36, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554385

RESUMEN

The arrival of comprehensive genome sequencing has accelerated the understanding of genetically aberrant advanced cancers and target identification for possible cancer treatment. Fibroblast growth factor receptor (FGFR) gene alterations are frequent findings in various rare and advanced cancers refractive to mainstay chemo-therapy or surgical interventions. Several FGFR inhibitors have been developed for addressing these genetically altered FGFR-harboring malignancies, and some have performed well in clinical trials. In contrast, others are still being investigated in different phases of clinical trials. FDA has approved four anticancer agents such as erdafitinib, pemigatinib, infigratinib, and futibatinib, for clinical use in oncogenic FGFR-driven malignancies. These include cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid malignancies. Pemigatinib is the only FGFR inhibitor globally approved (USA, EU, and Japan) and available as a targeted therapy for two types of cancer, including FGFR2 fusion or other rearrangements harboring cholangiocarcinoma and relapsed/refractory myeloid/lymphoid neoplasms with FGFR1 rearrangements. Myeloid/lymphoid neoplasm is the latest area of application added to the therapeutic armamentarium of FGFR inhibitors. Furthermore, futibatinib is the first-in-class covalent or irreversible pan-FGFR inhibitor that has received FDA approval for locally advanced or metastatic intrahepatic cholangiocarcinoma harboring FGFR2 gene aberrations. This review highlights the current clinical progress concerning the safety and efficacy of all the approved FGFR-TKIs (tyrosine kinase inhibitors) and their ongoing investigations in clinical trials for other oncogenic FGFR-driven malignancies.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma de Células Transicionales , Colangiocarcinoma , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos/patología
6.
Front Pharmacol ; 15: 1290398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505421

RESUMEN

Background: Alchornea laxiflora (Benth.) Pax & K. Hoffm. (A. laxiflora) has been indicated in traditional medicine to treat depression. However, scientific rationalization is still lacking. Hence, this study aimed to investigate the antidepressant potential of A. laxiflora using network pharmacology and molecular docking analysis. Materials and methods: The active compounds and potential targets of A. laxiflora and depression-related targets were retrieved from public databases, such as PubMed, PubChem, DisGeNET, GeneCards, OMIM, SwissTargetprediction, BindingDB, STRING, and DAVID. Essential bioactive compounds, potential targets, and signaling pathways were predicted using in silico analysis, including BA-TAR, PPI, BA-TAR-PATH network construction, and GO and KEGG pathway enrichment analysis. Later on, with molecular docking analysis, the interaction of essential bioactive compounds of A. laxiflora and predicted core targets of depression were verified. Results: The network pharmacology approach identified 15 active compounds, a total of 219 compound-related targets, and 14,574 depression-related targets with 200 intersecting targets between them. SRC, EGFR, PIK3R1, AKT1, and MAPK1 were the core targets, whereas 3-acetyloleanolic acid and 3-acetylursolic acid were the most active compounds of A. laxiflora with anti-depressant potential. GO functional enrichment analysis revealed 129 GO terms, including 82 biological processes, 14 cellular components, and 34 molecular function terms. KEGG pathway enrichment analysis yielded significantly enriched 108 signaling pathways. Out of them, PI3K-Akt and MAPK signaling pathways might have a key role in treating depression. Molecular docking analysis results exhibited that core targets of depression, such as SRC, EGFR, PIK3R1, AKT1, and MAPK1, bind stably with the analyzed bioactive compounds of A. laxiflora. Conclusion: The present study elucidates the bioactive compounds, potential targets, and pertinent mechanism of action of A. laxiflora in treating depression. A. laxiflora might exert an antidepressant effect by regulating PI3K-Akt and MAPK signaling pathways. However, further investigations are required to validate.

7.
J Biomol Struct Dyn ; : 1-11, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415708

RESUMEN

Kirsten rat sarcoma (KRAS) stands out as the most prevalent mutated oncogene, playing a crucial role in the initiation and progression of various cancer types, including colorectal, lung and pancreatic cancer. The oncogenic modifications of KRAS are intricately linked to tumor development and are identified in 22% of cancer patients. This has spurred the necessity to explore inhibition mechanisms, with the aim of investigating and repurposing existing drugs for diagnosing cancers dependent on KRAS G12C In this investigation, 26 nucleoside-based drugs were collected from literature to assess their effectiveness against KRAS G12C. The study incorporates in-silico molecular simulations and molecular docking examinations of these nucleoside-derived drugs with the KRAS G12C protein using Protein Data Bank (PDB) ID: 5V71. The docking outcomes indicated that two drugs, Azacitidine and Ribavirin, exhibited substantial binding affinities of -8.7 and -8.3 kcal/mol, respectively. These drugs demonstrated stability in binding to the active site of the protein during simulation studies. Root mean square deviation (RMSD) analyses indicated that the complexes closely adhered to an equilibrium RMSD value ranging from 0.17 to 0.2 nm. Additionally, % occupancies, bond angles and the length of hydrogen bonds were calculated. These findings suggest that Azacitidine and Ribavirin may potentially serve as candidates for repurposing in individuals with KRAS-dependent cancers.Communicated by Ramaswamy H. Sarma.

8.
Pathol Res Pract ; 254: 155041, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199135

RESUMEN

Autoimmune disorders represent a heterogeneous spectrum of conditions defined by an immune system's atypical reactivity against endogenous constituents. In the complex anatomy of autoimmune pathogenesis, lncRNAs have appeared as pivotal arbiters orchestrating the mechanisms of ailment initiation, immune cascades, and transcriptional modulation. One such lncRNA, MALAT1, has garnered attention for its potential association with the aetiology of several autoimmune diseases. MALAT1 has been shown to influence a wide spectrum of cellular processes, which include cell multiplication and specialization, as well as apoptosis and inflammation. In autoimmune diseases, MALAT1 exhibits both disease-specific and shared patterns of dysregulation, often correlating with disease severity. The molecular mechanisms underlying MALAT1's impact on autoimmune disorders include epigenetic modifications, alternative splicing, and modulation of gene expression networks. Additionally, MALAT1's intricate interactions with microRNAs, other lncRNAs, and protein-coding genes further underscore its role in immune regulation and autoimmune disease progression. Understanding the contribution of MALAT1 in autoimmune pathogenesis across different diseases could offer valuable insights into shared pathways, thereby clearing a path for the creation of innovative and enhanced therapeutic approaches to address these complex disorders. This review aims to elucidate the complex role of MALAT1 in autoimmune disorders, encompassing rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease (Crohn's disease and ulcerative colitis), type 1 diabetes, systemic lupus erythematosus, and psoriasis. Furthermore, it discusses the potential of MALAT1 as a diagnostic biomarker, therapeutic target, and prognostic indicator.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Autoinmunidad/genética , Enfermedades Autoinmunes/genética , MicroARNs/genética
9.
Heliyon ; 10(1): e23790, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205318

RESUMEN

In the past few decades, the medicinal properties of plants and their effects on the human immune system are being studied extensively. Plants are an incredible source of traditional medicines that help cure various diseases, including altered immune mechanisms and are economical and benign compared to allopathic medicines. Reported data in written documents such as Traditional Chinese medicine, Indian Ayurvedic medicine support the supplementation of botanicals for immune defense reactions in the body and can lead to safe and effective immunity responses. Additionally, some botanicals are well-identified as magical herbal remedies because they act upon the pathogen directly and help boost the immunity of the host. Chemical compounds, also known as phytochemicals, obtained from these botanicals looked promising due to their effects on the human immune system by modulating the lymphocytes which subsequently reduce the chances of getting infected. This paper summarises most documented phytochemicals and how they act on the immune system, their properties and possible mechanisms, screening conventions, formulation guidelines, comparison with synthetic immunity-enhancers, marketed immunity-boosting products, and immune-booster role in the ongoing ghastly corona virus wave. However, it focuses mainly on plant metabolites as immunomodulators. In addition, it also sheds light on the current advancements and future possibilities in this field. From this thorough study, it can be stated that the plant-based secondary metabolites contribute significantly to immunity building and could prove to be valuable medicaments for the design and development of novel immunomodulators even for a pandemic like COVID-19.

10.
CNS Neurol Disord Drug Targets ; 23(4): 411-419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37157197

RESUMEN

General anaesthetics (GA) have been in continuous clinical use for more than 170 years, with millions of young and elderly populations exposed to GA to relieve perioperative discomfort and carry out invasive examinations. Preclinical studies have shown that neonatal rodents with acute and chronic exposure to GA suffer from memory and learning deficits, likely due to an imbalance between excitatory and inhibitory neurotransmitters, which has been linked to neurodevelopmental disorders. However, the mechanisms behind anaesthesia-induced alterations in late postnatal mice have yet to be established. In this narrative review, we present the current state of knowledge on early life anaesthesia exposure-mediated alterations of genetic expression, focusing on insights gathered on propofol, ketamine, and isoflurane, as well as the relationship between network effects and subsequent biochemical changes that lead to long-term neurocognitive abnormalities. Our review provides strong evidence and a clear picture of anaesthetic agents' pathological events and associated transcriptional changes, which will provide new insights for researchers to elucidate the core ideas and gain an in-depth understanding of molecular and genetic mechanisms. These findings are also helpful in generating more evidence for understanding the exacerbated neuropathology, impaired cognition, and LTP due to acute and chronic exposure to anaesthetics, which will be beneficial for the prevention and treatment of many diseases, such as Alzheimer's disease. Given the many procedures in medical practice that require continuous or multiple exposures to anaesthetics, our review will provide great insight into the possible adverse impact of these substances on the human brain and cognition.


Asunto(s)
Anestesia , Anestésicos , Isoflurano , Propofol , Humanos , Ratones , Animales , Anciano , Anestésicos/farmacología , Isoflurano/farmacología , Propofol/farmacología , Genómica
11.
Pathol Res Pract ; 253: 155016, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070221

RESUMEN

Noncoding ribonucleic acids (ncRNAs) have surfaced as essential orchestrators within the intricate system of neoplastic biology. Specifically, the epidermal growth factor receptor (EGFR) signalling cascade shows a central role in the etiological underpinnings of pulmonary carcinoma. Pulmonary malignancy persists as a preeminent contributor to worldwide mortality attributable to malignant neoplasms, with non-small cell lung carcinoma (NSCLC) emerging as the most predominant histopathological subcategory. EGFR is a key driver of NSCLC, and its dysregulation is frequently associated with tumorigenesis, metastasis, and resistance to therapy. Over the past decade, researchers have unveiled a complex network of ncRNAs, encompassing microRNAs, long noncoding RNAs, and circular RNAs, which intricately regulate EGFR signalling. MicroRNAs, as versatile post-transcriptional regulators, have been shown to target various components of the EGFR pathway, influencing cancer cell proliferation, migration, and apoptosis. Additionally, ncRNAs have emerged as critical modulators of EGFR signalling, with their potential to act as scaffolds, decoys, or guides for EGFR-related proteins. Circular RNAs, a relatively recent addition to the ncRNA family, have also been implicated in EGFR signalling regulation. The clinical implications of ncRNAs in EGFR-driven lung cancer are substantial. These molecules exhibit diagnostic potential as robust biomarkers for early cancer detection and personalized treatment. Furthermore, their predictive value extends to predicting disease progression and therapeutic outcomes. Targeting ncRNAs in the EGFR pathway represents a novel therapeutic approach with promising results in preclinical and early clinical studies. This review explores the increasing evidence supporting the significant role of ncRNAs in modulating EGFR signalling in lung cancer, shedding light on their potential diagnostic, prognostic, and therapeutic implications.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , ARN Circular/genética , Regulación Neoplásica de la Expresión Génica , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , ARN Largo no Codificante/genética , Transducción de Señal , Receptores ErbB/genética , Receptores ErbB/metabolismo
12.
Pathol Res Pract ; 253: 154962, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006837

RESUMEN

Cancer is a multifaceted, complex disease characterized by unchecked cell growth, genetic mutations, and dysregulated signalling pathways. These factors eventually cause evasion of apoptosis, sustained angiogenesis, tissue invasion, and metastasis, which makes it difficult for targeted therapeutic interventions to be effective. MicroRNAs (miRNAs) are essential gene expression regulators linked to several biological processes, including cancer and inflammation. The NF-κB signalling pathway, a critical regulator of inflammatory reactions and oncogenesis, has identified miR-155 as a significant participant in its modulation. An intricate network of transcription factors known as the NF-κB pathway regulates the expression of genes related to inflammation, cell survival, and immunological responses. The NF-κB pathway's dysregulation contributes to many cancer types' development, progression, and therapeutic resistance. In numerous cancer models, the well-studied miRNA miR-155 has been identified as a crucial regulator of NF-κB signalling. The p65 subunit and regulatory molecules like IκB are among the primary targets that miR-155 directly targets to alter NF-κB activity. The molecular processes by which miR-155 affects the NF-κB pathway are discussed in this paper. It also emphasizes the miR-155's direct and indirect interactions with important NF-κB cascade elements to control the expression of NF-κB subunits. We also investigate how miR-155 affects NF-κB downstream effectors in cancer, including inflammatory cytokines and anti-apoptotic proteins.


Asunto(s)
MicroARNs , Neoplasias , Humanos , FN-kappa B/metabolismo , MicroARNs/metabolismo , Transducción de Señal/fisiología , Neoplasias/genética , Inflamación/genética , Inflamación/metabolismo
13.
Mol Neurobiol ; 61(7): 4750-4767, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38127187

RESUMEN

Misfolded and aggregated proteins build up in neurodegenerative illnesses, which causes neuronal dysfunction and ultimately neuronal death. In the last few years, there has been a significant upsurge in the level of interest towards the function of molecular chaperones in the control of misfolding and aggregation. The crucial molecular chaperones implicated in neurodegenerative illnesses are covered in this review article, along with a variety of their different methods of action. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones serve critical roles in preserving protein homeostasis. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones have integral roles in preserving regulation of protein balance. It has been demonstrated that aging, a significant risk factor for neurological disorders, affects how molecular chaperones function. The aggregation of misfolded proteins and the development of neurodegeneration may be facilitated by the aging-related reduction in chaperone activity. Molecular chaperones have also been linked to the pathophysiology of several instances of neuron withering illnesses, enumerating as Parkinson's disease, Huntington's disease, and Alzheimer's disease. Molecular chaperones have become potential therapy targets concerning with the prevention and therapeutic approach for brain disorders due to their crucial function in protein homeostasis and their connection to neurodegenerative illnesses. Protein homeostasis can be restored, and illness progression can be slowed down by methods that increase chaperone function or modify their expression. This review emphasizes the importance of molecular chaperones in the context of neuron withering disorders and their potential as therapeutic targets for brain disorders.


Asunto(s)
Chaperonas Moleculares , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Pliegue de Proteína , Terapia Molecular Dirigida
14.
Cell Signal ; 113: 110932, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866667

RESUMEN

Lung cancer's enduring global significance necessitates ongoing advancements in diagnostics and therapeutics. Recent spotlight on proteomic and genetic biomarker research offers a promising avenue for understanding lung cancer biology and guiding treatments. This review elucidates genetic and proteomic lung cancer biomarker progress and their treatment implications. Technological strides in mass spectrometry-based proteomics and next-generation sequencing enable pinpointing of genetic abnormalities and abnormal protein expressions, furnishing vital data for precise diagnosis, patient classification, and customized treatments. Biomarker-driven personalized medicine yields substantial treatment improvements, elevating survival rates and minimizing adverse effects. Integrating omics data (genomics, proteomics, etc.) enhances understanding of lung cancer's intricate biological milieu, identifying novel treatment targets and biomarkers, fostering precision medicine. Liquid biopsies, non-invasive tools for real-time treatment monitoring and early resistance detection, gain popularity, promising enhanced management and personalized therapy. Despite advancements, biomarker repeatability and validation challenges persist, necessitating interdisciplinary efforts and large-scale clinical trials. Integrating artificial intelligence and machine learning aids analyzing vast omics datasets and predicting treatment responses. Single-cell omics reveal cellular connections and intratumoral heterogeneity, valuable for combination treatments. Biomarkers enable accurate diagnosis, tailored medicines, and treatment response tracking, significantly impacting personalized lung cancer care. This approach spurs patient-centered trials, empowering active patient engagement. Lung cancer proteomic and genetic biomarkers illuminate disease biology and treatment prospects. Progressing towards individualized efficient therapies is imminent, alleviating lung cancer's burden through ongoing research, omics integration, and technological strides.


Asunto(s)
Neoplasias Pulmonares , Proteómica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Inteligencia Artificial , Genómica , Biomarcadores de Tumor/genética
15.
Saudi Pharm J ; 31(12): 101870, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053738

RESUMEN

This review aims to provide a thorough examination of the benefits, challenges, and advancements in utilizing lipids for more effective drug delivery, ultimately contributing to the development of innovative approaches in pharmaceutical science. Lipophilic drugs, characterized by low aqueous solubility, present a formidable challenge in achieving effective delivery and absorption within the human body. To address this issue, one promising approach involves harnessing the potential of lipids. Lipids, in their diverse forms, serve as carriers, leveraging their unique capacity to enhance solubility, stability, and absorption of these challenging drugs. By facilitating improved intestinal solubility and selective lymphatic absorption of porously permeable drugs, lipids offer an array of possibilities for drug delivery. This versatile characteristic not only bolsters the pharmacological efficacy of drugs with low bioavailability but also contributes to enhanced therapeutic performance, ultimately reducing the required dose size and associated costs. This comprehensive review delves into the strategic formulation approaches that employ lipids as carriers to ameliorate drug solubility and bioavailability. Emphasis is placed on the critical considerations of lipid type, composition, and processing techniques when designing lipid-based formulations. This review meticulously examines the multifaceted challenges that come hand in hand with lipid-based formulations for lipophilic drugs, offering an insightful perspective on future trends. Regulatory considerations and the broad spectrum of potential applications are also thoughtfully discussed. In summary, this review presents a valuable repository of insights into the effective utilization of lipids as carriers, all aimed at elevating the bioavailability of lipophilic drugs.

16.
Sci Rep ; 13(1): 19869, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963936

RESUMEN

Peroxisome proliferator-activated receptor-γ (PPAR-γ) partial agonists or antagonists, also termed as selective PPAR-γ modulators, are more beneficial than full agonists because they can avoid the adverse effects associated with PPAR-γ full agonists, such as weight gain and congestive heart disorders, while retaining the antidiabetic efficiency. In this study, we designed and synthesized new benzylidene-thiazolidine-2,4-diones while keeping the acidic thiazolidinedione (TZD) ring at the center, which is in contrast with the typical pharmacophore of PPAR-γ agonists. Five compounds (5a-e) were designed and synthesized in moderate to good yields and were characterized using spectral techniques. The in vivo antidiabetic efficacy of the synthesized compounds was assessed on streptozotocin-induced diabetic mice using standard protocols, and their effect on weight gain was also studied. Molecular docking and molecular dynamics (MD) simulation studies were performed to investigate the binding interactions of the title compounds with the PPAR-γ receptor and to establish their binding mechanism. Antidiabetic activity results revealed that compounds 5d and 5e possess promising antidiabetic activity comparable with the standard drug rosiglitazone. No compound showed considerable effect on the body weight of animals after 21 days of administration, and the findings showed statistical difference (p < 0.05 to p < 0.0001) among the diabetic control and standard drug rosiglitazone groups. In molecular docking study, compounds 5c and 5d exhibited higher binding energies (- 10.1 and - 10.0 kcal/mol, respectively) than the native ligand, non-thiazolidinedione PPAR-γ partial agonist (nTZDpa) (- 9.8 kcal/mol). MD simulation further authenticated the stability of compound 5c-PPAR-γ complex over the 150 ns duration. The RMSD, RMSF, rGyr, SASA, and binding interactions of compound 5c-PPAR-γ complex were comparable to those of native ligand nTZDpa-PPAR-γ complex, suggesting that the title compounds have the potential to be developed as partial PPAR-γ agonists.


Asunto(s)
Diabetes Mellitus Experimental , Tiazolidinedionas , Animales , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Hipoglucemiantes/farmacología , Ligandos , Simulación del Acoplamiento Molecular , PPAR gamma/metabolismo , Agonistas de PPAR-gamma , Rosiglitazona/farmacología , Aumento de Peso
17.
ACS Omega ; 8(36): 32271-32293, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37780202

RESUMEN

Daidzein (DDZ) is a well-known nutraceutical supplement belonging to the class of isoflavones. It is isolated from various sources such as alfalfa, soybean, and red clover. It demonstrates a broad array of pharmacological/beneficial properties such as cardiovascular exercise, cholesterol reduction, and anticancer, antifibrotic, and antidiabetic effects, which make it effective in treating a wide range of diseases. Its structure and operation are the same as those of human estrogens, which are important in preventing osteoporosis, cancer, and postmenopausal diseases. It is thus a promising candidate for development as a phytopharmaceutical. Addressing safety, efficacy, and physicochemical properties are the primary prerequisites. DDZ is already ingested every day in varying amounts, so there should not be a significant safety risk; however, each indication requires a different dose to be determined. Some clinical trials are already being conducted globally to confirm its safety, efficacy, and therapeutic potential. Furthermore, as a result of its therapeutic influence on health, in order to establish intellectual property, patents are utilized. In light of the vast potential of eugenol, this review presents a detailed data collection on DDZ to substantiate the claim to develop it in the therapeutic category.

18.
RSC Adv ; 13(41): 28666-28675, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37790097

RESUMEN

Plasmonic nanoparticles such as Ag have gained great interest in the biomedical domain and chemical analysis due to their unique optical properties. Herein, we report a simple, cost-effective, and highly selective colorimetric sensor of mercury(ii) based on E. diffusum (horsetail) extract-functionalized Ag nanoparticles (ED-AgNPs). The ED-AgNPs were synthesized by exploiting the coordination of Ag+ with the various functional groups of ED extract under sunlight exposure for only tens of seconds. ED-AgNPs (63 nm) were characterized using various techniques such as UV-vis, FTIR, DLS, SEM and EDX. FTIR spectra suggested the successful encapsulation of the AgNPs surface with ED extract and XRD confirmed its crystalline nature. This ED-AgNPs colorimetric sensor revealed remarkable selectivity towards Hg2+ in aqueous solution among other transition metal ions through a redox reaction mechanism. Besides, the sensor exhibited high sensitivity with rapid response and a detection limit of 70 nM. The sensor demonstrated feasibility for Hg(ii) detection in spiked tap and river water samples. In addition, the synthesized ED-AgNPs revealed enhanced antimicrobial activity with higher efficacy against the Gram-positive bacterium (L. monocytogenes with an inhibition zone of 18 mm) than the Gram-negative bacterium (E. coli with an inhibition zone of 10 mm). The simplicity and adaptability of this colorimetric sensor render it a promising candidate for on-site and point-of-care detection of heavy metal ions in diverse conditions.

19.
J Biomol Struct Dyn ; : 1-21, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707987

RESUMEN

In humans, Epidermal Growth Factor Receptor (EGFR) is linked to small-cell lung cancer, breast cancer, and glioblastoma. Receptor kinase inhibitors against EGFR have become a standard treatment option for non-small cell lung cancer (NSCLC), breast cancer patients, and even for those with EGFR mutations or resistance. About 2734 FDA-approved medication compounds were subjected to virtual screening for EGFR kinase inhibitory activity. The top 30 molecules were chosen based on the binding affinity scores and subjected to extra-precision docking and binding free energy analysis. The ADMET profile of the top three hit molecules was verified to confirm their druggability nature. Top three hits- compound 1047 (ZINC000001550477), 1302 (ZINC00003781952), and 2332 (ZINC000019632618) were identified on account of their MMGBSA binding affinity values. The top three hit compounds were subjected to molecular dynamics (MD) simulation for 100 ns. The dynamic nature of the ligand-protein complex was analyzed which corroborated the results of molecular docking and MMGBSA analysis studies. All the top three hits were further subjected to steered MD studies for testing the strength of these ligand-receptor binding in the presence of an external force. Compound 2332 (ZINC000019632618) was identified as the best hit molecule that can be used as a lead to develop newer derivatives of EGFR kinase inhibitors.Communicated by Ramaswamy H. Sarma.

20.
Antioxidants (Basel) ; 12(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37371931

RESUMEN

Photodegradation is an efficient strategy for the removal of organic pollutants from wastewater. Due to their distinct properties and extensive applications, semiconductor nanoparticles have emerged as promising photocatalysts. In this work, olive (Olea Europeae) fruit extract-based zinc oxide nanoparticles (ZnO@OFE NPs) were successfully biosynthesized using a one-pot sustainable method. The prepared ZnO NPs were systematically characterized using UV-Vis, FTIR, SEM, EDX and XRD and their photocatalytic and antioxidant activity was evaluated. SEM demonstrated the formation of spheroidal nanostructures (57 nm) of ZnO@OFE and the EDX analysis confirmed its composition. FTIR suggested the modification/capping of the NPs with functional groups of phytochemicals from the extract. The sharp XRD reflections revealed the crystalline nature of the pure ZnO NPs with the most stable hexagonal wurtzite phase. The photocatalytic activity of the synthesized catalysts was evaluated by measuring the degradation of methylene blue (MB) and methyl orange (MO) dyes under sunlight irradiation. Improved degradation efficiencies of 75% and 87% were achieved within only 180 min with photodegradation rate constant k of 0.008 and 0.013 min-1 for MB and MO, respectively. The mechanism of degradation was proposed. Additionally, ZnO@OFE NPs exhibited potent antioxidant activity against DPPH, hydroxyl, peroxide and superoxide radicals. Hence, ZnO@OFE NPs may have potential as a cost-effective and green photocatalyst for wastewater treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...