Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37577108

RESUMEN

Saccharomyces cerevisiae protein She9 is localized to the inner mitochondrial membrane and is required for normal mitochondrial morphology. While deletion mutants of SHE9 ( she9Δ ) are viable and display large ring-like mitochondrial structures, the molecular function of SHE9 is still unknown. We report a decreased growth of she9Δ cells during a diauxic shift, where mitochondria are primarily employing oxidative phosphorylation to generate ATP versus the alternative mechanism of glycolysis in high glucose conditions. Further bioinformatics analysis reveal putative functional protein associations, and proposes a model to aid in the understanding of the molecular function of She9.

2.
Curr Protoc Cell Biol ; 89(1): e115, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33044803

RESUMEN

Biochemical methods can reveal stable protein-protein interactions occurring within cells, but the ability to observe transient events and to visualize the subcellular localization of protein-protein interactions in cells and tissues in situ provides important additional information. The Proximity Ligation Assay® (PLA) offers the opportunity to visualize the subcellular location of such interactions at endogenous protein levels, provided that the probes that recognize the target proteins are within 40 nm. This sensitive technique not only elucidates protein-protein interactions, but also can reveal post-translational protein modifications. The technique is useful even in cases where material is limited, such as when paraffin-embedded clinical specimens are the only available material, as well as after experimental intervention in 2D and 3D model systems. Here we describe the basic protocol for using the commercially available Proximity Ligation Assay™ materials (Sigma-Aldrich, St. Louis, MO), and incorporate details to aid the researcher in successfully performing the experiments. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Proximity ligation assay Support Protocol 1: Antigen retrieval method for formalin-fixed, paraffin-embedded tissues Support Protocol 2: Creation of custom PLA probes using the Duolink™ In Situ Probemaker Kit when commercially available probes are not suitable Basic Protocol 2: Imaging, quantification, and analysis of PLA signals.


Asunto(s)
Bioensayo/métodos , Células/metabolismo , Especificidad de Órganos , Mapeo de Interacción de Proteínas/métodos , Procesamiento Proteico-Postraduccional , Animales , Antígenos/metabolismo , Formaldehído , Humanos , Imagenología Tridimensional , Adhesión en Parafina , Fijación del Tejido
3.
Annu Rev Pathol ; 13: 51-70, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29414250

RESUMEN

Tissue integrity is crucial for maintaining the homeostasis of living organisms. Abnormalities that affect sites of cell-cell contact can cause a variety of debilitating disorders. The desmosome is an essential cell-cell junctional protein complex in tissues that undergo stress, and it orchestrates intracellular signal transduction. Desmosome assembly and junctional integrity are required to maintain the overall homeostasis of a tissue, organ, and organism. This review discusses the desmosome and the human diseases associated with its disruption.


Asunto(s)
Desmosomas , Humanos
4.
Exp Dermatol ; 26(5): 423-430, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27892606

RESUMEN

SVEP1 is a recently identified multidomain cell adhesion protein, homologous to the mouse polydom protein, which has been shown to mediate cell-cell adhesion in an integrin-dependent manner in osteogenic cells. In this study, we characterized SVEP1 function in the epidermis. SVEP1 was found by qRT-PCR to be ubiquitously expressed in human tissues, including the skin. Confocal microscopy revealed that SVEP1 is normally mostly expressed in the cytoplasm of basal and suprabasal epidermal cells. Downregulation of SVEP1 expression in primary keratinocytes resulted in decreased expression of major epidermal differentiation markers. Similarly, SVEP1 downregulation was associated with disturbed differentiation and marked epidermal acanthosis in three-dimensional skin equivalents. In contrast, the dispase assay failed to demonstrate significant differences in adhesion between keratinocytes expressing normal vs low levels of SVEP1. Homozygous Svep1 knockout mice were embryonic lethal. Thus, to assess the importance of SVEP1 for normal skin homoeostasis in vivo, we downregulated SVEP1 in zebrafish embryos with a Svep1-specific splice morpholino. Scanning electron microscopy revealed a rugged epidermis with perturbed microridge formation in the centre of the keratinocytes of morphant larvae. Transmission electron microscopy analysis demonstrated abnormal epidermal cell-cell adhesion with disadhesion between cells in Svep1-deficient morphant larvae compared to controls. In summary, our results indicate that SVEP1 plays a critical role during epidermal differentiation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Epidermis/metabolismo , Epidermis/ultraestructura , Queratinocitos/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Expresión Génica , Humanos , Ratones Noqueados , Cultivo Primario de Células , Pez Cebra
5.
G3 (Bethesda) ; 6(12): 3869-3881, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27678521

RESUMEN

In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.


Asunto(s)
Replicación del ADN , Genes cdc , Meiosis/genética , Recombinación Genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cold Spring Harb Perspect Med ; 4(11): a015297, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25368015

RESUMEN

Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.


Asunto(s)
Adhesión Celular/fisiología , Comunicación Celular/fisiología , Desmosomas/fisiología , Epidermis/fisiología , Enfermedades de la Piel/fisiopatología , Enfermedades Autoinmunes/fisiopatología , Desmosomas/efectos de los fármacos , Epidermis/crecimiento & desarrollo , Regulación de la Expresión Génica/fisiología , Humanos , Transducción de Señal/fisiología , Enfermedades Cutáneas Genéticas/fisiopatología
7.
J Cell Biol ; 202(4): 653-66, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23940119

RESUMEN

Although much is known about signaling factors downstream of Rho GTPases that contribute to epidermal differentiation, little is known about which upstream regulatory proteins (guanine nucleotide exchange factors [GEFs] or GTPase-activating proteins [GAPs]) are involved in coordinating Rho signaling in keratinocytes. Here we identify the GEF breakpoint cluster region (Bcr) as a major upstream regulator of RhoA activity, stress fibers, and focal adhesion formation in keratinocytes. Loss of Bcr reduced expression of multiple markers of differentiation (such as desmoglein-1 [Dsg1], keratin-1, and loricrin) and abrogated MAL/SRF signaling in differentiating keratinocytes. We further demonstrated that loss of Bcr or MAL reduced levels of Dsg1 mRNA in keratinocytes, and ectopic expression of Dsg1 rescued defects in differentiation seen upon loss of Bcr or MAL signaling. Taken together, these data identify the GEF Bcr as a regulator of RhoA/MAL signaling in keratinocytes, which in turn promotes differentiation through the desmosomal cadherin Dsg1.


Asunto(s)
Diferenciación Celular , Desmogleína 1/metabolismo , Queratinocitos/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular Tumoral , Humanos , Queratinocitos/citología , ARN Mensajero/metabolismo
8.
J Clin Invest ; 123(4): 1556-70, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23524970

RESUMEN

Genetic disorders of the Ras/MAPK pathway, termed RASopathies, produce numerous abnormalities, including cutaneous keratodermas. The desmosomal cadherin, desmoglein-1 (DSG1), promotes keratinocyte differentiation by attenuating MAPK/ERK signaling and is linked to striate palmoplantar keratoderma (SPPK). This raises the possibility that cutaneous defects associated with SPPK and RASopathies share certain molecular faults. To identify intermediates responsible for executing the inhibition of ERK by DSG1, we conducted a yeast 2-hybrid screen. The screen revealed that Erbin (also known as ERBB2IP), a known ERK regulator, binds DSG1. Erbin silencing disrupted keratinocyte differentiation in culture, mimicking aspects of DSG1 deficiency. Furthermore, ERK inhibition and the induction of differentiation markers by DSG1 required both Erbin and DSG1 domains that participate in binding Erbin. Erbin blocks ERK signaling by interacting with and disrupting Ras-Raf scaffolds mediated by SHOC2, a protein genetically linked to the RASopathy, Noonan-like syndrome with loose anagen hair (NS/LAH). DSG1 overexpression enhanced this inhibitory function, increasing Erbin-SHOC2 interactions and decreasing Ras-SHOC2 interactions. Conversely, analysis of epidermis from DSG1-deficient patients with SPPK demonstrated increased Ras-SHOC2 colocalization and decreased Erbin-SHOC2 colocalization, offering a possible explanation for the observed epidermal defects. These findings suggest a mechanism by which DSG1 and Erbin cooperate to repress MAPK signaling and promote keratinocyte differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , Desmogleína 1/metabolismo , Epidermis/patología , Queratinocitos/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Células Cultivadas , Desmocolinas/metabolismo , Desmogleína 1/genética , Desmogleína 1/fisiología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Queratinocitos/metabolismo , Queratodermia Palmoplantar/metabolismo , Queratodermia Palmoplantar/patología , Laminas/genética , Laminas/metabolismo , Masculino , Cultivo Primario de Células , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas , ARN Interferente Pequeño/genética , Adulto Joven , Proteínas ras/metabolismo
9.
PLoS One ; 7(2): e31575, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22393365

RESUMEN

BACKGROUND: In Saccharomyces cerevisiae, the G1 cyclin/cyclin-dependent kinase (CDK) complexes Cln1,-2,-3/Cdk1 promote S phase entry during the mitotic cell cycle but do not function during meiosis. It has been proposed that the meiosis-specific protein kinase Ime2, which is required for normal timing of pre-meiotic DNA replication, is equivalent to Cln1,-2/Cdk1. These two CDK complexes directly catalyze phosphorylation of the B-type cyclin/CDK inhibitor Sic1 during the cell cycle to enable its destruction. As a result, Clb5,-6/Cdk1 become activated and facilitate initiation of DNA replication. While Ime2 is required for Sic1 destruction during meiosis, evidence now suggests that Ime2 does not directly catalyze Sic1 phosphorylation to target it for destabilization as Cln1,-2/Cdk1 do during the cell cycle. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that Sic1 is eventually degraded in meiotic cells lacking the IME2 gene (ime2Δ), supporting an indirect role of Ime2 in Sic1 destruction. We further examined global RNA expression comparing wild type and ime2Δ cells. Analysis of these expression data has provided evidence that Ime2 is required early in meiosis for normal transcription of many genes that are also periodically expressed during late G1 of the cell cycle. CONCLUSIONS/SIGNIFICANCE: Our results place Ime2 at a position in the early meiotic pathway that lies upstream of the position occupied by Cln1,-2/Cdk1 in the analogous cell cycle pathway. Thus, Ime2 may functionally resemble Cln3/Cdk1 in promoting S phase entry, or it could play a role even further upstream in the corresponding meiotic cascade.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Proteína Quinasa CDC2/metabolismo , Catálisis , Ciclo Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclinas/metabolismo , Replicación del ADN , Epistasis Genética , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Meiosis , Modelos Biológicos , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Ploidias , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Proc Natl Acad Sci U S A ; 106(1): 232-7, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19116279

RESUMEN

Orderly progression through meiosis requires strict regulation of DNA metabolic events, so that a single round of DNA replication is systematically followed by a recombination phase and 2 rounds of chromosome segregation. We report here the disruption of this sequence of events in Saccharomyces cerevisiae through meiosis-specific induction of the cyclin-dependent kinase (CDK) inhibitor Sic1 mutated at multiple phosphorylation sites. Accumulation of this stabilized version of Sic1 led to significant DNA rereplication in the absence of normal chromosome segregation. Deletion of DMC1 abolished DNA rereplication, but additional deletion of RAD17 restored the original phenotype. Therefore, activation of the meiotic recombination checkpoint, which arrests meiotic progression at pachytene, suppressed DNA rereplication resulting from Sic1 stabilization. In contrast to deletion of DMC1, deletion of NDT80, which encodes a transcription factor required for pachytene exit, did not inhibit DNA rereplication. Our results provide strong evidence that CDK activity is required to prevent inappropriate initiation of DNA synthesis before the meiotic divisions.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Replicación del ADN , Meiosis , Proteínas de Saccharomyces cerevisiae/fisiología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/fisiología , Segregación Cromosómica , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Proteínas de Unión al ADN/fisiología , Mutación , Fase Paquiteno , Fosforilación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA