Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Sci ; 32(5): 549-55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27169655

RESUMEN

We developed an analytical method for analyzing electronic cigarette (E-cigarette) smoke, and measured the carbonyl compounds and volatile organic compounds generated by 10 brands of second-generation E-cigarettes. A glass filter (Cambridge filter pad) for particulate matter and a solid sorbent tube packed with Carboxen-572 for gaseous compounds were used to collect E-cigarette smoke. These were then analyzed using a two-step elution method with carbon disulfide and methanol, followed by high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC/MS). Formaldehyde (FA), acetaldehyde (AA), acetone (AC), acrolein (ACR), propanal (PA), acetol (AT), glyoxal (GO), and methyl glyoxal (MGO) were detected by HPLC in some E-cigarettes. Propylene glycol (PG), glycerol (GLY), and some esters were detected by GC/MS. GO and MGO exist mainly as particulate matter. AA, AC, ACR, PA, and AT exist mainly as gaseous compounds. FA exists as both particulate matter and gaseous compounds. These carbonyl compounds have carbon numbers C1 - C3. The main components of E-liquid are PG (C3) and GLY (C3). Therefore, the oxidation of liquids, such as PG and GLY in E-cigarettes upon incidental contact with the heating element in E-cigarette, is suggested as being a possible cause for carbonyl generation. When the puff number exceeds a critical point, carbonyl generation rapidly increases and then remains constant. The results of this study are now being used to determine the following E-cigarette smoking protocol: puff volume, 55 mL; puff duration, 2 s; and puff number, 30. E-cigarette analysis revealed very large variation in carbonyl concentration among not only different brands, but also different samples of the same product. Typical distributions of carbonyl concentration were not observed in any of the E-cigarettes tested, and the mean values greatly differed from median values.


Asunto(s)
Técnicas de Química Analítica/métodos , Sistemas Electrónicos de Liberación de Nicotina , Compuestos Orgánicos Volátiles/química , Técnicas de Química Analítica/instrumentación , Estructura Molecular , Compuestos Orgánicos Volátiles/análisis
2.
J Chromatogr A ; 1426: 48-55, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26653840

RESUMEN

We have developed a new analytical method for the determination of nicotine, tar, volatile organic compounds and carbonyls in main-stream cigarette smoke using a sorbent cartridge packed with Carboxen 572 (CX-572) and a Cambridge filter pad (CFP) followed by the two-phase/one-pot elution method. A CX-572 cartridge is installed between the intake of the CFP and the pump of the smoking machine. Gaseous compounds collected with the CX-572 cartridge and total particulate matter (TPM) collected with the CFP are coeluted simultaneously in the same vial and then analyzed by high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC/MS) and gas chromatograph-thermal conductivity detector (GC/TCD). Carbonyl compounds are determined by adding derivatizing reagent (2,4-dinitrophenylhydrazine, DNPH) to the eluate followed by HPLC analysis. VOCs and nicotine are determined by GC/MS, and water is determined by GC/TCD. The same sample eluate solution is used for HPLC, GC/MS and GC/TCD analyses. As a result of measuring main-stream cigarette smoke generated from reference cigarettes, almost all carbonyl compounds and VOCs except formaldehyde were passed through a CFP and trapped in a CX-572 cartridge. 100% of nicotine, tar and TPM were trapped in a CFP. 50% of water and 53% of formaldehyde were trapped in a CFP. The one-pot data is almost equal to the sums of CFP (particulate matter) and CX-572 (gaseous compounds) data. The two-phase/one-pot elution method can simultaneously measure nicotine, tar, volatile organic compounds and carbonyl compounds in cigarette smoke with simple operation and small amounts of reagents.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Nicotiana/química , Humo/análisis , Disulfuro de Carbono/química , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Metanol/química , Nicotina/análisis , Productos de Tabaco/análisis , Compuestos Orgánicos Volátiles/análisis
3.
Nihon Eiseigaku Zasshi ; 70(3): 249-58, 2015.
Artículo en Japonés | MEDLINE | ID: mdl-26411943

RESUMEN

OBJECTIVES: Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. METHODS: Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. RESULTS: Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 µg m(-3) in summer and 1,100 µg m(-3) in winter in indoor air. CONCLUSIONS: p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Aire/análisis , Monitoreo del Ambiente/métodos , Clorobencenos/análisis , Formiatos/análisis , Gases , Japón , Dióxido de Nitrógeno/análisis , Estaciones del Año
4.
Environ Res ; 137: 364-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25601740

RESUMEN

A nationwide survey of indoor air quality in Japan was conducted using four types of diffusive samplers. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 602 houses throughout Japan in winter and summer. Four kinds of diffusive samplers were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid impregnated silica for basic gases. These samplers are small and lightweight and do not require a power source, hence, it was possible to obtain a large number of air samples via mail from throughout Japan. Almost all compounds in indoor air were present at higher levels in summer than in winter. In particular, formaldehyde, toluene, and ammonia were strongly dependent on temperature, and their levels increased with temperature. The nitrogen dioxide concentration in indoor air particularly increased only during winter and was well correlated with the formic acid concentration (correlation coefficient=0.959). Ozone concentrations in indoor air were extremely low compared with the outdoor concentrations. Ozone flowing from outdoor air may be decomposed quickly by chemical compounds in indoor air; therefore, it is suggested that the indoor/outdoor ratio of ozone represents the ventilation of the indoor environment.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Vivienda , Japón , Estaciones del Año
5.
Int J Environ Res Public Health ; 11(11): 11192-200, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25353061

RESUMEN

Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Sistemas Electrónicos de Liberación de Nicotina , Compuestos Orgánicos/análisis , Acetaldehído/análisis , Acroleína/análisis , Formaldehído/análisis , Glioxal/análisis , Calor , Japón , Oxidación-Reducción
6.
Rev Sci Instrum ; 83(10): 105110, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126807

RESUMEN

Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb(3)Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a (7)Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm∕3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

7.
Analyst ; 137(18): 4274-9, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22842342

RESUMEN

A typical method for the measurement of glutaraldehyde (GLA) employs 2,4-dinitrophenylhydrazine (DNPH) to form GLA-DNPhydrazone derivatives. However, this method is subject to analytical errors because GLA-DNPhydrazone is a quaternary bis-derivative and forms three geometric isomers (E-E, E-Z and Z-Z) as a result of the two C[double bond, length as m-dash]N double bonds. To overcome this issue, a method for transforming the C[double bond, length as m-dash]N double bond into a C-N single bond, using reductive amination of DNPhydrazone derivatives, has been applied. The amination reaction of GLA-DNPhydrazones with 2-picoline borane is accelerated with catalytic amounts of acid and is completed within 10 minutes in the presence of 100 mmol L(-1) phosphoric acid. Reduction of GLA-DNPhydrazone by 2-picoline borane is unique and results in the formation of N-(2,4-dinitrophenyl)-1-piperidinamine (DNPPA). NMR and LC-APCI-MS data confirmed the product identification. DNPPA is very stable and did not change when stored for at least four weeks at room temperature. DNPPA has excellent solubility of 14.6 g L(-1) at 20 °C in acetonitrile. The absorption maximum wavelength and the molar absorptivity of DNPPA were 351 nm and 4.2 × 10(4) L mol(-1) cm(-1) respectively. Complete separation between the reduced forms of C1-C10 aldehyde DNPhydrazones, including DNPPA, can be achieved by operating the reversed-phase high-performance liquid chromatograph at 351 nm in gradient mode using a C18 amide column. The reductive amination method for GLA overcomes analytical errors caused by E-E, E-Z and Z-Z geometrical isomers.


Asunto(s)
Cromatografía Líquida de Alta Presión , Glutaral/análisis , Glutaral/química , Hidrazonas/química , Aminación
8.
J Magn Reson ; 192(2): 329-37, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18424127

RESUMEN

We have commenced a project to develop a beyond-1 GHz solution NMR spectrometer using a HTS coil. Due to a small residual resistance present in the HTS conductor and joint resistance between conductors, a stable persistent current sufficient for NMR measurements is unlikely. Therefore, a current has to be supplied to the HTS coil from an external power supply. The ripple of an external power supply causes a field fluctuation which must be stabilized. In this study we show results of NMR measurements using a 500-600 MHz NMR in such an external current mode: the field fluctuations are stabilized by an internal 2H lock. The field fluctuation from the external power supply comprises a major field fluctuation component at low frequencies, 0.003-0.005 Hz, and superimposed minor field ripples at 2 Hz and 50 Hz. The former limits the time interval of the internal 2H lock, while the latter generates sidebands in the NMR spectrum. Sideband and baseline noise are controlled by appropriate selection of the feedback loop parameters of the lock. The quality of the 1D-solution NMR spectra observed in external current mode is equivalent to that obtained in persistent current mode. However, if the feedback loop time is as short as the gradient pulse width, refocusing of the NMR signal is lost and NMR peaks disappear. The 2D-NOESY and the 2D-HSQC spectra of ubiquitin in an external current mode have been acquired. The quality of the 2D spectra is equivalent to those obtained in persistent current mode; i.e. the internal 2H lock operates stably over an experimental time interval of 40-50 min. To realize a beyond-1 GHz NMR spectrometer, further investigations must be made of (i) the long term stability of a DC power supply, (ii) the enhancement of the compensation field limit for the internal 2H lock, (iii) the extension of the helium refill time interval, and (iv) a method to correct the field homogeneity in the external current mode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...