Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 15: 646413, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716678

RESUMEN

There are more than 1000 odorant receptor (OR) genes in the mouse genome. Each olfactory sensory neuron expresses only one of these genes, in a monoallelic fashion. The transcript abundance of homologous OR genes vary between distinct mouse strains. Here we analyzed the expression of the OR gene Olfr17 (also named P2) in different genomic contexts. Olfr17 is expressed at higher levels in the olfactory epithelium from 129 mice than from C57BL/6 (B6) mice. However, we found that in P2-IRES-tauGFP knock-in mice, the transcript levels of the 129 Olfr17 allele are highly reduced when compared to the B6 Olfr17 allele. To address the mechanisms involved in this variation we compared the 5' region sequence and DNA methylation patterns of the B6 and 129 Olfr17 alleles. Our results show that genetic variations in cis regulatory regions can lead to differential DNA methylation frequencies in these OR gene alleles. They also show that expression of the Olfr17 alleles is largely affected by the genetic background, and suggest that in knock-in mice, expression can be affected by epigenetic modifications in the region of the targeted locus.

2.
STAR Protoc ; 1(3): 100153, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377047

RESUMEN

This protocol combines fluorescent in situ hybridization and immunostaining to simultaneously detect, in histological sections from the same animal, subpopulations of neurons activated after two episodes of sensory stimulation. It allows the identification of groups of cells singly activated by either stimulus or co-activated by both stimuli. Our method results in nuclear staining for c-Fos mRNA and c-Fos protein, allowing better spatial and temporal resolution than previously published protocols, although it requires quick brain fixation. For complete details on the use and execution of this protocol, please refer to Carvalho et al. (2015, 2020).


Asunto(s)
Neuronas/citología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Inmunohistoquímica , Ratones Endogámicos C57BL , ARN/metabolismo , Coloración y Etiquetado , Factores de Tiempo
3.
Cell Rep ; 32(8): 108061, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32846119

RESUMEN

The internal representation of sensory information via coherent activation of specific pathways in the nervous system is key to appropriate behavioral responses. Little is known about how chemical stimuli that elicit instinctive behaviors lead to organized patterns of activity in the hypothalamus. Here, we study how a wide range of chemosignals form a discernible map of olfactory information in the ventromedial nucleus of the hypothalamus (VMH) and show that different stimuli entail distinct active neural ensembles. Importantly, we demonstrate that this map depends on functional inputs from the vomeronasal organ. We present evidence that the spatial locations of active VMH ensembles are correlated with activation of distinct vomeronasal receptors and that disjunct VMH ensembles exhibit differential projection patterns. Moreover, active ensembles with distinct spatial locations are not necessarily associated with different behavior categories, such as defensive or social, calling for a revision of the currently accepted model of VMH organization.


Asunto(s)
Hipotálamo/fisiología , Bulbo Olfatorio/fisiología , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA