Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 260, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594608

RESUMEN

BACKGROUND: The finger lime (Citrus australasica), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing. RESULTS: Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with C. australis revealed that 13,661 genes in pseudochromosomes were unique in C. australasica. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five C. australasica cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the C. australasica genome. CONCLUSIONS: The genome of C. australasica present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.


Asunto(s)
Compuestos de Calcio , Citrus , Citrus/genética , Resistencia a la Enfermedad/genética , Australia , Óxidos , Filogenia
2.
Hortic Res ; 10(5): uhad058, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37213680

RESUMEN

Recent advances in genome sequencing and assembly techniques have made it possible to achieve chromosome level reference genomes for citrus. Relatively few genomes have been anchored at the chromosome level and/or are haplotype phased, with the available genomes of varying accuracy and completeness. We now report a phased high-quality chromosome level genome assembly for an Australian native citrus species; Citrus australis (round lime) using highly accurate PacBio HiFi long reads, complemented with Hi-C scaffolding. Hifiasm with Hi-C integrated assembly resulted in a 331 Mb genome of C. australis with two haplotypes of nine pseudochromosomes with an N50 of 36.3 Mb and 98.8% genome assembly completeness (BUSCO). Repeat analysis showed that more than 50% of the genome contained interspersed repeats. Among them, LTR elements were the predominant type (21.0%), of which LTR Gypsy (9.8%) and LTR copia (7.7%) elements were the most abundant repeats. A total of 29 464 genes and 32 009 transcripts were identified in the genome. Of these, 28 222 CDS (25 753 genes) had BLAST hits and 21 401 CDS (75.8%) were annotated with at least one GO term. Citrus specific genes for antimicrobial peptides, defense, volatile compounds and acidity regulation were identified. The synteny analysis showed conserved regions between the two haplotypes with some structural variations in Chromosomes 2, 4, 7 and 8. This chromosome scale, and haplotype resolved C. australis genome will facilitate the study of important genes for citrus breeding and will also allow the enhanced definition of the evolutionary relationships between wild and domesticated citrus species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...