Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(6): 1544-1549, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306707

RESUMEN

Improving the proton transport in polymer electrolytes impacts the performance of next-generation solid-state batteries. However, little is known about proton conductivity in nonaqueous systems due to the lack of an appropriate level of fundamental understanding. Here, we studied the proton transport in small molecules with dynamic hydrogen bonding, 1,2,3-triazole, as a model system of proton hopping in a nonaqueous environment using incoherent quasi-elastic neutron scattering. By using the jump-diffusion model, we identified the elementary jump-diffusion motion of protons at a much shorter length scale than those by nuclear magnetic resonance and impedance spectroscopy for the estimated long-range diffusion. In addition, a spatially restricted diffusive motion was observed, indicating that proton motion in 1,2,3-triazole is complex with various local correlated dynamics. These correlated dynamics will be important in elucidating the nature of the proton dynamics in nonaqueous systems.

2.
Materials (Basel) ; 14(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804607

RESUMEN

The demand for electric double-layer capacitors, which have high capacity and are maintenance-free, for use in a variety of devices has increased. Nevertheless, it is important to know the degradation behavior of these capacitors at high temperatures because they are expected to be used in severe environments. Therefore, degradation tests at 25 °C and 80 °C were carried out in the current study to analyze the degradation behavior. Steam-activated carbon, Ketjen black, and PTFE were used as the electrodes, conductive material, and binder, respectively, and KOH was used as the electrolyte. The impedance and capacitance were calculated from the voltage and current in the device using the alternating current (AC) impedance method. The results showed that the impedance increased and the capacitance decreased over 14 days at 80 °C, which is the inverse of what we observed at 25 °C. Rapid degradation was also confirmed from the 80 °C degradation test. The residual voltage after measuring the current and voltage was a prominent factor influencing this rapid degradation.

3.
Materials (Basel) ; 14(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477269

RESUMEN

The demand for electric double-layer capacitors (EDLCs) has recently increased, especially for regenerative braking systems in electric or hybrid vehicles. However, using EDLCs under high temperature often enhances their degradation. Continuously monitoring EDLC degradation is important to prevent sudden malfunction and rapid drops in efficiency. Therefore, it is useful to diagnose the degradation at a lower frequency than that used in charge/discharge. Unused and degraded EDLCs were analyzed using the alternating current impedance method for measurements over a wide frequency range. Each result had a different spectrum up to 1 kHz. In addition, we show the basic inside condition of EDLCs with equivalent circuit analysis. This paper explores the possibility of degradation diagnosis at a high frequency and the basic physical mechanism.

5.
J Phys Chem B ; 122(4): 1367-1377, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29304273

RESUMEN

To investigate the effects of temperature and hydration on the dynamics of purple membrane (PM), we measured the broadband complex dielectric spectra from 0.5 GHz to 2.3 THz using a vector network analyzer and terahertz time-domain spectroscopy from 233 to 293 K. In the lower temperature region down to 83 K, the complex dielectric spectra in the THz region were also obtained. The complex dielectric spectra were analyzed through curve fitting using several model functions. We found that the hydrated states of one relaxational mode, which was assigned as the coupled motion of water molecules with the PM surface, began to overlap with the THz region at approximately 230 K. On the other hand, the relaxational mode was not observed for the dehydrated state. On the basis of this result, we conclude that the protein-dynamical-transition-like behavior in the THz region is due to the onset of the overlap of the relaxational mode with the THz region. Temperature hysteresis was observed in the dielectric spectrum at 263 K when the hydration level was high. It is suggested that the hydration water behaves similarly to supercooled liquid at that temperature. The third hydration layer may be partly formed to observe such a phenomenon. We also found that the relaxation time is slower than that of a globular protein, lysozyme, and the microscopic environment in the vicinity of the PM surface is suggested to be more heterogeneous than lysozyme. It is proposed that the spectral overlap of the relaxational mode and the low-frequency vibrational mode is necessary for the large conformational change of protein.


Asunto(s)
Simulación de Dinámica Molecular , Membrana Púrpura/química , Membrana Púrpura/efectos de los fármacos , Temperatura , Agua/farmacología , Espectroscopía Dieléctrica , Halobacterium salinarum/química , Espectroscopía de Terahertz , Agua/química
6.
J Phys Chem B ; 117(25): 7729-36, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23772968

RESUMEN

We analyzed solute and solvent dynamics of sugars and peptides aqueous solutions using extended depolarized light scattering (EDLS) and broadband dielectric spectroscopies (BDS). Spectra measured with both techniques reveal the same mechanism of rotational diffusion of peptides molecules. In the case of sugars, this solute reorientational relaxation can be isolated by EDLS measurements, whereas its contribution to the dielectric spectra is almost negligible. In the presented analysis, we characterize the hydration water in terms of hydration number and retardation ratio ξ between relaxation times of hydration and bulk water. Both techniques provide similar estimates of ξ. The retardation imposed on the hydration water by sugars is ~3.3 ± 1.3 and involves only water molecules hydrogen-bonded (HB) to solutes (~3 water molecules per sugar OH-group). In contrast, polar peptides cause longer range perturbations beyond the first hydration shell, and ξ between 2.8 and 8, increasing with the number of chemical groups engaged in HB formation. We demonstrate that chemical heterogeneity and specific HB interactions play a crucial role in hydration dynamics around polar solutes. The obtained results help to disentangle the role of excluded volume and enthalpic contributions in dynamics of hydration water at the interface with biological molecules.


Asunto(s)
Carbohidratos/química , Péptidos/química , Agua/química , Enlace de Hidrógeno , Luz , Dispersión de Radiación , Soluciones/química
7.
J Chem Phys ; 136(12): 124512, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22462879

RESUMEN

Dynamics of water, especially in the temperature range of the "no man's land", remain a mystery. We present detailed study of dynamics in aqueous LiCl solution that is often considered as a model for bulk water. We employ broadband dielectric and light scattering spectroscopy in a broad frequency and temperature range. Our analysis reveals no sign of the fragile-to-strong crossover (FSC) neither in structural relaxation nor in translational motions. Our experimental results combined with a large selection of literature data lead to the clear conclusion-there is no FSC in dynamics of aqueous solutions at T ∼ 200-230 K. Instead, our analysis reveals appearance of the so-called excess wing at the high frequency tail of the structural relaxation peak. We discuss the localized nature of the relaxation process that contributes to the excess wing.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 011503, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21867174

RESUMEN

A simplified model of a hydrogen-bonding network is proposed in order to clarify the microscopic structure of the cooperative rearranging region (CRR) in Adam-Gibbs theory [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. Our model can be solved analytically, and it successfully explains the reported systematic features of the glass transition of polyhydric alcohols. In this model, hydrogen bonding is formulated based on binding free energy. Assuming a cluster of molecules connected by double hydrogen bonds is a CRR and approximating the hydrogen-bonding network as a Bethe lattice in percolation theory, the temperature dependence of the structural relaxation time can be obtained analytically. Reported data on relaxation times are well described by the obtained equation. By taking the lower limit of the binding free energy with this equation, the Vogel-Fulcher-Tammann equation can be derived. Consequently, the fragility index and glass transition temperature can be expressed as functions of the number of OH groups in a molecule, and this relation agrees well with the reported experimental data.


Asunto(s)
Alcoholes/química , Carbohidratos/química , Química/métodos , Vidrio , Enlace de Hidrógeno , Conformación Molecular , Temperatura , Termodinámica , Temperatura de Transición , Agua/química
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 1): 051503, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21728536

RESUMEN

We have investigated the glass transitions of trihydric alcohols using broadband dielectric spectroscopy, and compare the results with those previously reported for sugar alcohols. Although a systematic glass transition feature related to molecular size has been reported for sugar alcohols, the essential factor governing this feature is still unclear because the number of carbon atoms (N(C)) and the number of OH groups (N(OH)) per molecule are identical in sugar alcohols. By examining trihydric alcohols (N(C)≠N(OH)), we conclude that N(OH) is dominant for the characteristics of the slow dynamics, such as fragility and glass transition temperature. This result suggests that the topological structure of the hydrogen-bonding network (coordination number) plays an important role in the glass transition of polyhydric alcohols. Furthermore, the orientational correlation factor evaluated using the Kirkwood-Fröhlich theory reveals a similarity in hydrogen bond formation among a variety of polyhydric alcohols. Based on these two experimental results, we discuss a possible physical picture of the glass transition of polyhydric alcohols.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 1): 041501, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20481725

RESUMEN

Broadband dielectric spectra of supercooled 1,2,6-hexanetriol are presented in order to reveal physical picture behind a glass transition of polyhydric alcohols. It has been reported so far that temperature dependences of alpha relaxation time for sugar alcohols exhibit systematic trend against number of carbon atoms or OH groups per molecule. However, because each molecule is composed of equal number of carbon atoms and OH groups in the case of the reported sugar alcohols, the more dominant parameter to govern the alpha relaxation dynamics has not been discussed. By using a chemical structure of the hexanetriol composed of the deferent number of carbon and OH, it is possible to determine the dominant parameter. From temperature dependence of alpha relaxation times, it is strongly supported that the number of OH groups is the dominant parameter. Furthermore, from an analysis of static dielectric constant, it is suggested that local hydrogen-bonding structure is similar among all polyhydric alcohols. From these two results, a simple picture of the origin of the systematic character is proposed.


Asunto(s)
Alcoholes Grasos/química , Vidrio/química , Alcoholes del Azúcar/química , Impedancia Eléctrica , Enlace de Hidrógeno , Hidróxidos/química , Temperatura de Transición
11.
Rev Sci Instrum ; 81(12): 123902, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21198035

RESUMEN

A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...