Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Biochem Pharmacol ; 215: 115733, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543347

RESUMEN

Pregnane X receptor (PXR) is one of the key regulators of drug metabolism, gluconeogenesis, and lipid synthesis in the human liver. Activation of PXR by drugs such as rifampicin, simvastatin, and efavirenz causes adverse reactions such as drug-drug interaction, hyperglycemia, and dyslipidemia. The inhibition of PXR activation has merit in preventing such adverse events. Here, we demonstrated that bromodomain containing protein 9 (BRD9), a component of non-canonical brahma-related gene 1-associated factor (ncBAF), one of the chromatin remodelers, interacts with PXR. Rifampicin-mediated induction of CYP3A4 expression was attenuated by iBRD9, an inhibitor of BRD9, in human primary hepatocytes and CYP3A/PXR-humanized mice, indicating that BRD9 enhances the transcriptional activation of PXR in vitro and in vivo. Chromatin immunoprecipitation assay reveled that iBRD9 treatment resulted in attenuation of the rifampicin-mediated binding of PXR to the CYP3A4 promoter region, suggesting that ncBAF functions to facilitate the binding of PXR to its response elements. Efavirenz-induced hepatic lipid accumulation was attenuated by iBRD9 in C57BL/6J mice, suggesting that the inhibition of BRD9 would be useful to reduce the risk of efavirenz-induced hepatic steatosis. Collectively, we found that inhibitors of BRD9, a component of ncBAF that plays a role in assisting transactivation by PXR, would be useful to reduce the risk of PXR-mediated adverse reactions.


Asunto(s)
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Ratones , Animales , Receptor X de Pregnano/genética , Activación Transcripcional , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampin/farmacología , Ratones Endogámicos C57BL , Hígado/metabolismo , Hepatocitos/metabolismo , Lípidos , Factores de Transcripción/metabolismo
2.
Int Heart J ; 64(4): 535-542, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37460322

RESUMEN

Rapid reperfusion by primary percutaneous coronary intervention (pPCI) is an established strategy for the treatment of patients with ST-segment elevation myocardial infarction (STEMI). Pre-hospital electrocardiogram (PH-ECG) transmission by the emergency medical services (EMS) facilitates timely reperfusion in these patients. However, evidence regarding the clinical benefits of PH-ECG in individual hospitals is limited.This retrospective, observational study investigated the clinical efficacy of PH-ECG in STEMI patients who underwent pPCI. Of a total of 382 consecutive STEMI patients, 237 were enrolled in the study and divided into 2 groups: a PH-ECG group (n = 77) and non-PH-ECG group (n = 160). Door-to-balloon time (D2BT) was significantly shorter in the PH-ECG group (66 [52-80] min), compared to the non-PH-ECG group (70 [57-88] minutes, P = 0.01). The 30-day all-cause mortality rate was 6% in the PH-ECG group, which was significantly lower than that in the non-PH-ECG group (16%) (P = 0.037, hazard ratio [HR]: 0.38, 95% CI: 0.15-0.98). This trend was particularly evident in severely ill patients when stratified by GRACE score.The use of PH-ECG improved the survival rate of STEMI patients undergoing pPCI due to the improved pre-arrival preparation based on the EMS information. Coordination between EMS and PCI-capable institutes is essential for the management of PH-ECG.


Asunto(s)
Servicios Médicos de Urgencia , Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/cirugía , Intervención Coronaria Percutánea/efectos adversos , Infarto del Miocardio/etiología , Estudios Retrospectivos , Hospitales , Resultado del Tratamiento , Electrocardiografía
3.
Drug Metab Dispos ; 51(9): 1188-1195, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37344179

RESUMEN

Aldo-keto reductase 1C3 (AKR1C3) plays a role in the detoxification and activation of clinical drugs by catalyzing reduction reactions. There are approximately 400 single-nucleotide polymorphisms (SNPs) in the AKR1C3 gene, but their impact on the enzyme activity is still unclear. This study aimed to clarify the effects of SNPs of AKR1C3 with more than 0.5% global minor allele frequency on the reductase activities for its typical substrates. Recombinant AKR1C3 wild-type and R66Q, E77G, C145Y, P180S, or R258C variants were constructed using insect Sf21 cells, and reductase activities for acetohexamide, doxorubicin, and loxoprofen by recombinant AKR1C3s were measured by liquid chromatography-tandem mass spectrometry. Among the variants tested, the C145Y variant showed remarkably low (6%-14% of wild type) intrinsic clearances of reductase activities for all three drugs. Reductase activities of these three drugs were measured using 34 individual Japanese liver cytosols, revealing that heterozygotes of the SNP g.55101G>A tended to show lower reductase activities for three drugs than homozygotes of the wild type. Furthermore, genotyping of the SNP g.55101G>A causing C145Y in 96 Caucasians, 166 African Americans, 192 Koreans, and 183 Japanese individuals was performed by polymerase chain reaction-restriction fragment length polymorphism. This allelic variant was specifically detected in Asians, with allele frequencies of 6.8% and 3.6% in Koreans and Japanese, respectively. To conclude, an AKR1C3 allele with the SNP g.55101G>A causing C145Y would be one of the causal factors for interindividual variabilities in the efficacy and toxicity of drugs reduced by AKR1C3. SIGNIFICANCE STATEMENT: This is the first study to clarify that the AKR1C3 allele with the SNP g.55101G>A causing C145Y results in a decrease in reductase activity. Since the allele was specifically observed in Asians, the allele would be a factor causing an interindividual variability in sensitivity of drug efficacy or toxicity of drugs reduced by AKR1C3 in Asians.


Asunto(s)
Doxorrubicina , Humanos , Alelos , Frecuencia de los Genes/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética
4.
Drug Metab Dispos ; 51(10): 1230-1237, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37349114

RESUMEN

Human pregnane X receptor (PXR) is a major nuclear receptor that upregulates the expression of drug-metabolizing enzymes such as CYP3A4. In our recent study, it was revealed that PXR interacts with DAZ-associated protein 1 (DAZAP1), which is an essential component of the paraspeckle, a membraneless nuclear body, and the interaction was disassociated by rifampicin, a ligand of PXR. The purpose of this study was to clarify the roles of paraspeckles in PXR-mediated transcriptional regulation. Immunoprecipitation assays using PXR-overexpressing HepG2 (ShP51) cells revealed that PXR interacts with not only DAZAP1 but also NEAT1_2, a long noncoding RNA included in the paraspeckle, and that the interaction between PXR and NEAT1_2 was disassociated by rifampicin. These results suggest that PXR is trapped in paraspeckles and that the activation of PXR by its ligands facilitates its disassociation from paraspeckles. Induction of CYP3A4 by rifampicin was significantly enhanced by the knockdown of NEAT1_2 or DAZAP1 in ShP51 cells and their parental HepG2 cells. A luciferase assay using a plasmid containing the PXR response elements of CYP3A4 revealed that the increased CYP3A4 induction by siNEAT1_2 or siDAZAP1 was due to the increased transactivation by PXR. These results suggest that paraspeckles play a role in trapping nuclear PXR in the absence of the ligand to negatively regulate transactivation of its downstream gene. Collectively, this is the first study to demonstrate that the paraspeckle components NEAT1_2 and DAZAP1 negatively regulate CYP3A4 induction by PXR. SIGNIFICANCE STATEMENT: This study revealed that PXR interacts with paraspeckle components NEAT1_2 and DAZAP1 to suppress CYP3A4 induction by PXR, and the interaction is dissociated by PXR ligands. This finding provides a novel concept that paraspeckles formed by liquid-liquid phase separation potentially affect drug metabolism via negative regulation of PXR function.


Asunto(s)
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ligandos , Paraspeckles , Receptor X de Pregnano/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampin/farmacología , Proteínas de Unión al ARN
5.
Drug Metab Dispos ; 51(8): 1016-1023, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37137721

RESUMEN

Drug-drug interactions (DDI) have a significant impact on drug efficacy and safety. It has been reported that orlistat, an anti-obesity drug, inhibits the hydrolysis of p-nitrophenol acetate, a common substrate of the major drug-metabolizing hydrolases, carboxylesterase (CES) 1, CES2, and arylacetamide deacetylase (AADAC), in vitro. The aim of this study was to examine whether orlistat affects the pharmacokinetics of drug(s) metabolized by hydrolases in vivo after evaluating its inhibitory potencies against CES1, CES2, and AADAC in vitro. Orlistat potently inhibited the hydrolysis of acebutolol, a specific substrate of CES2, in a non-competitive manner (inhibition constant, K i = 2.95 ± 0.16 nM), whereas it slightly inhibited the hydrolysis of temocapril and eslicarbazepine acetate, specific substrates of CES1 and AADAC, respectively (IC50 >100 nM). The in vivo DDI potential was elucidated using mice, in which orlistat showed strong inhibition against acebutolol hydrolase activities in the liver and intestinal microsomes, similar to humans. The area under the curve (AUC) of acebutolol was increased by 43%, whereas the AUC of acetolol, a hydrolyzed metabolite of acebutolol, was decreased by 47% by co-administration of orlistat. The ratio of the K i value to the maximum unbound plasma concentration of orlistat (<0.012) is lower than the risk criteria for DDI in the liver defined by the US Food and Drug Administration guideline (>0.02), whereas the ratio of the K i value to the estimated intestinal luminal concentration (3.3 × 105) is considerably higher than the risk criteria in the intestine (>10). Therefore, this suggests that orlistat causes DDI by inhibiting hydrolases in the intestine. SIGNIFICANCE STATEMENT: This study demonstrated that orlistat, an anti-obesity drug, causes drug-drug interactions in vivo by potently inhibiting carboxylesterase 2 in the intestine. This is the first evidence that inhibition of hydrolases causes drug-drug interactions.


Asunto(s)
Fármacos Antiobesidad , Hidrolasas , Humanos , Ratones , Animales , Hidrolasas/metabolismo , Orlistat/farmacología , Hidrolasas de Éster Carboxílico/metabolismo , Fármacos Antiobesidad/farmacología , Acebutolol , Carboxilesterasa/metabolismo , Preparaciones Farmacéuticas/metabolismo , Hidrólisis , Interacciones Farmacológicas
6.
Drug Metab Dispos ; 51(6): 733-742, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36927840

RESUMEN

Nintedanib, which is used to treat idiopathic pulmonary fibrosis and non-small cell lung cancer, is metabolized to a pharmacologically inactive carboxylate derivative, BIBF1202, via hydrolysis and subsequently by glucuronidation to BIBF1202 acyl-glucuronide (BIBF1202-G). Since BIBF1202-G contains an ester bond, it can be hydrolytically cleaved to BIBF1202. In this study, we sought to characterize these metabolic reactions in the human liver and intestine. Nintedanib hydrolysis was detected in human liver microsomes (HLMs) (Clearance [CL int]: 102.8 ± 18.9 µL/min per mg protein) but not in small intestinal preparations. CES1 was suggested to be responsible for nintedanib hydrolysis according to experiments using recombinant hydrolases and hydrolase inhibitors as well as proteomic correlation analysis using 25 individual HLM. BIBF1202 glucuronidation in HLM (3.6 ± 0.3 µL/min per mg protein) was higher than that in human intestinal microsomes (1.5 ± 0.06 µL/min per mg protein). UGT1A1 and gastrointestinal UGT1A7, UGT1A8, and UGT1A10 were able to mediate BIBF1202 glucuronidation. The impact of UGT1A1 on glucuronidation was supported by the finding that liver microsomes from subjects homozygous for the UGT1A1*28 allele showed significantly lower activity than those from subjects carrying the wild-type UGT1A1 allele. Interestingly, BIBF1202-G was converted to BIBF1202 in HLS9 at 70-fold higher rates than the rates of BIBF1202 glucuronidation. An inhibition study and proteomic correlation analysis suggested that ß-glucuronidase is responsible for hepatic BIBF1202-G deglucuronidation. In conclusion, the major metabolic reactions of nintedanib in the human liver and intestine were quantitatively and thoroughly elucidated. This information could be helpful to understand the inter- and intraindividual variability in the efficacy of nintedanib. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to characterize the enzymes responsible for each step of nintedanib metabolism in the human body. This study found that ß-glucuronidase may contribute to BIBF1202-G deglucuronidation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteómica , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Glucurónidos/metabolismo , Hidrolasas/metabolismo , Glucuronidasa/metabolismo , Cinética
7.
Arch Biochem Biophys ; 736: 109536, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36724833

RESUMEN

Nabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.7-fold higher than in the liver cytosol. In a panel of 24 individual HLM samples with quantitative proteomics data, the 17ß-hydroxysteroid dehydrogenase 12 (HSD17B12) protein level had the high correlation coefficient (r = 0.80, P < 0.001) among 4457 proteins quantified in microsomal fractions during MNBO formation. Recombinant HSD17B12 expressed in HEK293T cells exhibited prominent nabumetone reductase activity, and the contribution of HSD17B12 to the activity in the HLM was calculated as almost 100%. MNBO formation in HepG2 and Huh7 cells was significantly decreased by the knockdown of HSD17B12. We also examined the role of HSD17B12 in drug metabolism and found that recombinant HSD17B12 catalyzed the reduction reactions of pentoxifylline and S-warfarin, suggesting that HSD17B12 prefers compounds containing a methyl ketone group on the alkyl chain. In conclusion, our study demonstrated that HSD17B12 is responsible for the formation of MNBO from nabumetone. Together with the evidence for pentoxifylline and S-warfarin reduction, this is the first study to report that HSD17B12, which is known to metabolize endogenous compounds, such as estrone and 3-ketoacyl-CoA, plays a role as a drug-metabolizing enzyme.


Asunto(s)
Pentoxifilina , Humanos , Antiinflamatorios no Esteroideos , Células HEK293 , Microsomas Hepáticos/metabolismo , Nabumetona/metabolismo , Pentoxifilina/metabolismo , Warfarina/metabolismo , Biocatálisis
8.
Drug Metab Dispos ; 51(1): 17-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36310032

RESUMEN

Enzymes of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase superfamilies are involved in the reduction of compounds containing a ketone group. In most cases, multiple isoforms appear to be involved in the reduction of a compound, and the enzyme(s) that are responsible for the reaction in the human liver have not been elucidated. The purpose of this study was to quantitatively evaluate the contribution of each isoform to reduction reactions in the human liver. Recombinant cytosolic isoforms were constructed, i.e., AKR1C1, AKR1C2, AKR1C3, AKR1C4, and carbonyl reductase 1 (CBR1), and a microsomal isoform, 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1), and their contributions to the reduction of 10 compounds were examined by extrapolating the relative expression of each reductase protein in human liver preparations to recombinant systems quantified by liquid chromatography-mass spectrometry. The reductase activities for acetohexamide, doxorubicin, haloperidol, loxoprofen, naloxone, oxcarbazepine, and pentoxifylline were predominantly catalyzed by cytosolic isoforms, and the sum of the contributions of individual cytosolic reductases was almost 100%. Interestingly, AKR1C3 showed the highest contribution to acetohexamide and loxoprofen reduction, although previous studies have revealed that CBR1 mainly metabolizes them. The reductase activities of bupropion, ketoprofen, and tolperisone were catalyzed by microsomal isoform(s), and the contributions of HSD11B1 were calculated to be 41%, 32%, and 104%, respectively. To our knowledge, this is the first study to quantitatively evaluate the contribution of each reductase to the reduction of drugs in the human liver. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to determine the contribution of aldo-keto reductase (AKR)-1C1, AKR1C2, AKR1C3, AKR1C4, carbonyl reductase 1, and 11ß-hydroxysteroid dehydrogenase type 1 to drug reductions in the human liver by utilizing the relative expression factor approach. This study found that AKR1C3 contributes to the reduction of compounds at higher-than-expected rates.


Asunto(s)
Cetonas , Deshidrogenasas-Reductasas de Cadena Corta , Humanos , Aldo-Ceto Reductasas/metabolismo , Carbonil Reductasa (NADPH) , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Acetohexamida , Hígado/metabolismo , Oxidorreductasas/metabolismo , Isoformas de Proteínas
9.
Pharm Res ; 40(4): 863-871, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36002612

RESUMEN

PURPOSE: Small extracellular vesicles (sEV) containing proteins and RNAs play important roles as intercellular signal mediators. A critical issue is that there are multiple methods to prepare sEV fractions. The purpose of this study was to examine whether cancer cell-derived sEV fractions prepared by different isolation methods show similar responses for the induction of inflammatory cytokines in macrophages. METHODS: sEV fractions from the conditioned medium of MCF-7 cells were prepared by ultracentrifugation (UC), the MagCapture Exosome Isolation Kit PS (PS), or the ExoQuick-TC kit (EQ). The mRNA levels of inflammatory cytokines in differentiated THP-1 cells treated with the sEV fractions were evaluated. RESULTS: The yields of sEV fractions obtained from 1 mL conditioned medium by UC, PS, or EQ were 3.2×108 particles (0.27 µg protein), 12.8×108 particles (0.87 µg protein) and 23.5 ×108 particles (4.50 µg protein), respectively. The average particle sizes in the UC, PS, and EQ fractions were 184.8 ± 1.8 nm, 157.8 ± 1.3 nm and 165.8 ± 1.1 nm, respectively. CD9 and CD81, markers of sEV, were most highly detected in the PS fraction, followed by the EQ and UC fractions. These results suggest that PS gave sEV with relatively high purity, and many protein contaminants appear to be included in the EQ fraction. The mRNA levels of inflammatory cytokines in THP-1 macrophages were most prominently increased by treatment with the UC fraction, followed by the EQ and PS fractions, suggesting that contaminants rather than sEV may largely induce an inflammatory response. CONCLUSION: The isolation method affects the evaluation of sEV function.


Asunto(s)
Vesículas Extracelulares , Humanos , Medios de Cultivo Condicionados/metabolismo , Células MCF-7 , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , ARN Mensajero/metabolismo , Inflamación/metabolismo
10.
Biochem Pharmacol ; 205: 115247, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113565

RESUMEN

N6-Methyladenosine (m6A) modification is the most prevalent RNA modification in mammals. We have recently demonstrated that inhibition of m6A modification by 3-deazaadenosine results in an increase in the expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, and CYP2C8 in human liver-derived cells. In the present study, we aimed to clarify the mechanism of m6A-mediated regulation of CYP2B6 expression. RNA immunoprecipitation using an anti-m6A antibody revealed that CYP2B6 mRNA in human liver and hepatocarcinoma-derived HepaRG cells was m6A-modified around the stop codon. In contrast to the treatment with 3-deazaadenosine, double knockdown of methyltransferase like (METTL) 3 and METTL14 (METTL3/14) resulted in a decrease in the levels of CYP2B6 mRNA in Huh-7 and HepaRG cells and a decrease in bupropion hydroxylase activity, a marker activity of CYP2B6, in HepaRG cells. The stability of CYP2B6 mRNA was not influenced by siMETTL3/14. Reporter assays using the plasmids containing the last exon or 5'-flanking region of CYP2B6 indicated that reporter activities were not influenced by knockdown of METTL3/14. The expression levels of the constitutive androstane receptor, pregnane X receptor, and retinoid X receptor, which are the nuclear receptors regulating the transcription of CYP2B6, were not influenced by siMETTL3/14. The chromatin immunoprecipitation and formaldehyde-assisted enrichment of regulatory elements assays revealed that H3K9me2, a repressive histone marker, was enriched in the vicinity of the upstream region of CYP2B6, and knockdown of METTL3/14 induced the condensation of the chromatin structure in this region. In conclusion, we demonstrated that METTL3/14 upregulated CYP2B6 expression by altering the chromatin status.


Asunto(s)
Cromatina , Citocromo P-450 CYP2B6 , Humanos , Adenosina/farmacología , Adenosina/metabolismo , Bupropión , Cromatina/genética , Codón de Terminación , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2C8/genética , Formaldehído , Histonas/metabolismo , Metilación , Metiltransferasas/genética , Receptor X de Pregnano/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Plants (Basel) ; 11(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406935

RESUMEN

The International Space Station (ISS) provides a precious opportunity to study plant growth and development under microgravity (micro-G) conditions. In this study, four lines of Arabidopsis seeds (wild type, wild-type MCA1-GFP, mca1-knockout, and MCA1-overexpressed) were cultured on a nylon lace mesh placed on Gelrite-solidified MS-medium in the Japanese experiment module KIBO on the ISS, and the entanglement of roots with the mesh was examined under micro-G and 1-G conditions. We found that root entanglement with the mesh was enhanced, and root coiling was induced under the micro-G condition. This behavior was less pronounced in mca1-knockout seedlings, although MCA1-GFP distribution at the root tip of the seedlings was nearly the same in micro-G-grown seedlings and the ground control seedlings. Possible involvement of MCA1 in the root entanglement is discussed.

13.
Biochem Pharmacol ; 199: 115010, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314168

RESUMEN

Human arylacetamide deacetylase (AADAC) hydrolyzes various drugs containing an acetyl group, such as ketoconazole and rifampicin. Knowledge about the role of human AADAC in drug metabolism is accumulating, but the regulatory mechanism of its expression has not been elucidated. In mice, it has been suggested that Aadac expression may be regulated by peroxisome proliferator-activated receptor α (Pparα). This study examined whether human AADAC is regulated by PPARα, which widely regulates the expression of lipid metabolism-related genes. In human hepatoma Huh-7 cells, AADAC mRNA and protein levels were significantly increased by treatment with fenofibric acid and WY-14643, PPARα ligands. Knockdown and overexpression of PPARα resulted in decreased and increased expression of AADAC, respectively. Luciferase assays revealed that the direct repeat 1 (DR1) at -193/-181 in the AADAC promoter region is responsible for transactivation by PPARα. Chromatin immunoprecipitation assays revealed the binding of PPARα to DR1. Thus, it was demonstrated that human AADAC is regulated by PPARα through binding to DR1. Oil red O staining showed that overexpression of AADAC in Huh-7 cells suppressed lipid accumulation after treatment with free fatty acids. The suppression was restored by treatment with diisopropyl fluorophosphate, an AADAC inhibitor. The WY-14643-mediated suppression of lipid accumulation was restored by AADAC knockdown. These results suggested that AADAC has a role in suppressing cellular lipid accumulation. In conclusion, this study demonstrated the regulation of human AADAC by PPARα and its significance in lipid accumulation.


Asunto(s)
Metabolismo de los Lípidos , PPAR alfa , Animales , Hidrolasas de Éster Carboxílico/metabolismo , Humanos , Hidrólisis , Lípidos , Hígado/metabolismo , Ratones , PPAR alfa/genética , PPAR alfa/metabolismo
14.
Drug Metab Dispos ; 50(5): 624-633, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152204

RESUMEN

Interindividual differences in the expression and activity of drug metabolizing enzymes including cytochrome P450, UDP-glucuronosyltransferase, and esterases cause variable therapeutic efficacy or adverse events of drugs. As the major mechanisms causing the variability in the expression of drug metabolizing enzymes, transcriptional regulation by transcription factors, epigenetic regulation including DNA methylation, and posttranscriptional regulation by microRNA are well known. Recently, adenosine-to-inosine RNA editing and methylation of adenosine at the N 6 position on RNA have emerged as novel regulators of drug metabolism potency. In this review article, the current knowledge of these two prevalent types of posttranscriptional modification mediated modulation of drug metabolism involved genes is introduced. SIGNIFICANCE STATEMENT: Elucidation of the significance of adenosine-to-inosine RNA editing and N 6-methyladenosine in the regulation of drug metabolizing enzymes is expected to lead to a deeper understanding of interindividual variability in the therapeutic efficacy or adverse effects of medicines.


Asunto(s)
MicroARNs , Edición de ARN , Adenosina/metabolismo , Epigénesis Genética , Inosina/metabolismo , MicroARNs/metabolismo
15.
Biochem Pharmacol ; 195: 114842, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798123

RESUMEN

Orally administered ketoconazole may rarely induce liver injury and adrenal insufficiency. A metabolite formed by arylacetamide deacetylase (AADAC)-mediated hydrolysis has been observed in cellulo studies, and it is relevant to ketoconazole-induced cytotoxicity. This study tried to examine the significance of AADAC in ketoconazole-induced toxicity in vivo using Aadac knockout mice. Oral administration of 150 mg/kg ketoconazole resulted in the area under the plasma concentration-time curve values of ketoconazole and N-deacetylketoconazole, a hydrolyzed metabolite of ketoconazole, in Aadac knockout mice being significantly higher and lower than those in wild-type mice, respectively. With the administration of ketoconazole (300 mg/kg/day) for 7 days, Aadac knockout mice showed higher mortality (100%) than wild-type mice (42.9%), and they also showed significantly higher plasma alanine transaminase and lower corticosterone levels, thus representing liver injury and steroidogenesis inhibition, respectively. It was suggested that a higher plasma ketoconazole concentration likely accounts for the inhibition of the synthesis of corticosterone, which has anti-inflammatory effects, in the adrenal gland in Aadac KO mice. In Aadac knockout mice, hepatic mRNA levels of immune- and inflammation-related factors were increased by the administration of 300 mg/kg ketoconazole, and the increase was restored by the replenishment of corticosterone (40 mg/kg, s.c.) along with recoveries of plasma alanine transaminase levels. In conclusion, Aadac defects exacerbate ketoconazole-induced liver injury by inhibiting glucocorticoid synthesis and enhancing the inflammatory response. This in vivo study revealed that the hydrolysis of ketoconazole by AADAC can mitigate ketoconazole-induced toxicities.


Asunto(s)
Insuficiencia Suprarrenal/genética , Hidrolasas de Éster Carboxílico/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Cetoconazol/toxicidad , Insuficiencia Suprarrenal/enzimología , Insuficiencia Suprarrenal/etiología , Animales , Área Bajo la Curva , Hidrolasas de Éster Carboxílico/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/toxicidad , Regulación Enzimológica de la Expresión Génica , Hidrólisis , Cetoconazol/metabolismo , Cetoconazol/farmacocinética , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microsomas Hepáticos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Materials (Basel) ; 14(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832220

RESUMEN

The step structure on the (0001¯)C facet of 4H-SiC boules grown by the physical vapor transport growth method with different nitrogen doping concentrations was examined in various scales, using different types of microscopy, such as differential interference contrast optical microscopy (DICM) and atomic force microscopy (AFM). DICM observations unveiled characteristic macroscopic surface features of the facet dependent on the nitrogen doping concentration. AFM observations revealed the existence of step trains of half unit-cell height (0.5 nm) on the facet and found that their separation was undulated with a characteristic wavelength dependent on the nitrogen doping concentration; the higher the nitrogen concentration, the longer was the undulation wavelength of step separation. Based on these results, we discussed the origin and formation mechanism of the separation-undulated step structure observed on the (0001¯)C facet of nitrogen-doped 4H-SiC boules.

17.
Xenobiotica ; 51(12): 1352-1359, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34779706

RESUMEN

Pirfenidone is a first-line drug for the treatment of idiopathic pulmonary fibrosis. The primary metabolic pathways of pirfenidone in humans are 5-hydroxylation and subsequent oxidation to 5-carboxylpirfenidone. The aims of this study were to determine the cytochrome P450 isoforms responsible for pirfenidone 5-hydroxylation and to evaluate their contributions in human liver microsomes (HLM).Among the recombinant P450 isoforms, CYP1A2, CYP2D6, CYP2C19, CYP2A6, and CYP2B6 were shown to catalyse the 5-hydroxylation of pirfenidone. Pirfenidone 5-hydroxylase activity by HLM was inhibited by α-naphthoflavone (by 45%), 8-methoxypsolaren (by 84%), tranylcypromine (by 53%), and quinidine (by 15%), which are CYP1A2, CYP1A2/CYP2A6/CYP2C19, CYP2A6/CYP2C19, and CYP2D6 inhibitors, respectively.In 17 individual HLM donors, pirfenidone 5-hydroxylase activity was significantly correlated with phenacetin O-deethylase (r = 0.89, P < 0.001) and S-mephenytoin 4'-hydroxylase activities (r = 0.51, P < 0.05), which are CYP1A2 and CYP2C19 marker activities, respectively.By using the relative activity factors, the contributions of CYP1A2, CYP2C19, and CYP2D6 to pirfenidone 5-hydroxylation in the human liver were 72.8%, 11.8%, and 8.9%, respectively.In conclusion, we clearly demonstrated the predominant P450 involved in pirfenidone 5-hydroxylation in the human liver is CYP1A2, with CYP2C19 and CYP2D6 playing a minor role.


Asunto(s)
Citocromos , Catálisis , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromos/metabolismo , Humanos , Hidroxilación , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Piridonas
18.
Biosci Biotechnol Biochem ; 85(12): 2466-2475, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34596677

RESUMEN

Water containing ultrafine/nano bubbles (UFBs) promoted the growth of tomato (Solanum lycopersicum) in soil damaged by cultivation of tomato in the previous year or bacterial wilt-like disease and also promoted the growth of lettuce (Lactuca sativa) when lettuce was grown in the soil damaged by repeated cultivation of lettuce. On the other hand, UFB supply did not affect plant growth in rock wool or healthy soil. Furthermore, the growth of lettuce was not affected by UFB water treatment in the soil damaged by the cultivation of tomato. UFB water partly suppressed the growth of the pathogen of bacteria wilt disease, Ralstonia solanacearum in vitro. These data suggest that UFB water is effective to recover the plant growth from soil damage.


Asunto(s)
Ralstonia solanacearum
19.
Biochem Pharmacol ; 193: 114766, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536357

RESUMEN

Methylation of adenosine at the N6 position to form N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification of mammalian mRNA. This modification is catalyzed by a methyltransferase-like 3 (METTL3)-METTL14 complex and is erased by demethylases such as fat mass and obesity-associated protein (FTO) or AlkB homolog 5 (ALKBH5). m6A modification regulates mRNA stability, nuclear export, splicing, and/or protein translation via recognition by reader proteins such as members of YT521-B homology (YTH) family. Carboxylesterase 2 (CES2) is a serine esterase responsible for the hydrolysis of drugs and endogenous substrates, such as triglycerides and diacylglycerides. Here, we examined the potential regulation of human CES2 expression by m6A modification. CES2 mRNA level was significantly increased by double knockdown of METTL3 and METTL14 but was decreased by knockdown of FTO or ALKBH5 in HepaRG and HepG2 cells, leading to changes in its protein level and hydrolase activity for 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11), suggesting that m6A modification negatively regulates CES2 expression. Consistent with the changes in CES2 expression, lipid accumulation in the cells was decreased by double knockdown of METTL3 and METTL14 but was increased by knockdown of FTO or ALKBH5. RNA immunoprecipitation assays using an anti-m6A antibody showed that adenosines in the 5'-untranslated region (UTR) and the last exon of CES2 are methylated. Luciferase assays revealed that YTHDC2, which degrades m6A-containing mRNA, downregulates CES2 expression by recognition of m6A in the 5'-UTR of CES2. Collectively, we demonstrated that m6A modification has a great impact on the regulation of CES2, affecting pharmacokinetics, drug response and lipid metabolism.


Asunto(s)
Adenosina/análogos & derivados , Carboxilesterasa/metabolismo , Adenosina/genética , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Carboxilesterasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Irinotecán/farmacología , Metabolismo de los Lípidos/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Life Sci ; 284: 119896, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450168

RESUMEN

AIM: Abiraterone acetate for metastatic castration-resistant prostate cancer is an acetylated prodrug to be hydrolyzed to abiraterone. Abiraterone acetate is known to be hydrolyzed by pancreatic cholesterol esterase secreted into the intestinal lumen. This study aimed to investigate the possibility that arylacetamide deacetylase (AADAC) expressed in enterocytes contributes to the hydrolysis of abiraterone acetate based on its substrate preference. MATERIALS AND METHODS: Abiraterone acetate hydrolase activity was measured using human intestinal (HIM) and liver microsomes (HLM) as well as recombinant AADAC. Correlation analysis between activity and AADAC expression was performed in 14 individual HIMs. The in vivo pharmacokinetics of abiraterone acetate was examined using wild-type and Aadac knockout mice administered abiraterone acetate with or without orlistat, a pancreatic cholesterol esterase inhibitor. KEY FINDINGS: Recombinant AADAC showed abiraterone acetate hydrolase activity with similar Km value to HIM and HLM. The positive correlation between activity and AADAC levels in individual HIMs supported the responsibility of AADAC for abiraterone acetate hydrolysis. The area under the plasma concentration-time curve (AUC) of abiraterone after oral administration of abiraterone acetate in Aadac knockout mice was 38% lower than that in wild-type mice. The involvement of pancreatic cholesterol esterase in abiraterone formation was revealed by the decreased AUC of abiraterone by coadministration of orlistat. Orlistat potently inhibited AADAC, implying its potential as a perpetrator of drug-drug interactions. SIGNIFICANCE: AADAC is responsible for the hydrolysis of abiraterone acetate in the intestine and liver, suggesting that concomitant use of abiraterone acetate and drugs potently inhibiting AADAC should be avoided.


Asunto(s)
Acetato de Abiraterona/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Acetato de Abiraterona/sangre , Acetato de Abiraterona/química , Acetato de Abiraterona/farmacocinética , Adolescente , Adulto , Anciano , Androstenos/sangre , Animales , Carboxilesterasa/metabolismo , Femenino , Humanos , Hidrólisis , Concentración 50 Inhibidora , Intestinos/efectos de los fármacos , Cinética , Masculino , Ratones Noqueados , Microsomas Hepáticos/metabolismo , Persona de Mediana Edad , Orlistat/administración & dosificación , Orlistat/farmacología , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...