Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Am Vet Med Assoc ; 262(5): 665-673, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324993

RESUMEN

OBJECTIVE: To validate the performance of a novel, integrated test for canine cancer screening that combines cell-free DNA quantification with next-generation sequencing (NGS) analysis. SAMPLE: Retrospective data from a total of 1,947 cancer-diagnosed and presumably cancer-free dogs were used to validate test performance for the detection of 7 predefined cancer types (lymphoma, hemangiosarcoma, osteosarcoma, leukemia, histiocytic sarcoma, primary lung tumors, and urothelial carcinoma), using independent training and testing sets. METHODS: Cell-free DNA quantification data from all samples were analyzed using a proprietary machine learning algorithm to determine a Cancer Probability Index (High, Moderate, or Low). High and Low Probability of Cancer were final result classifications. Moderate cases were additionally analyzed by NGS to arrive at a final classification of High Probability of Cancer (Cancer Signal Detected) or Low Probability of Cancer (Cancer Signal Not Detected). RESULTS: Of the 595 dogs in the testing set, 89% (n = 530) received a High or Low Probability result based on the machine learning algorithm; 11% (65) were Moderate Probability, and NGS results were used to assign a final classification. Overall, 87 of 122 dogs with the 7 predefined cancer types were classified as High Probability and 467 of 473 presumably cancer-free dogs were classified as Low Probability, corresponding to a sensitivity of 71.3% for the predefined cancer types at a specificity of 98.7%. CLINICAL RELEVANCE: This integrated test offers a novel option to screen for cancer types that may be difficult to detect by physical examination at a dog's wellness visit.

2.
PLoS One ; 17(4): e0266623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35471999

RESUMEN

Cancer is the leading cause of death in dogs, yet there are no established screening paradigms for early detection. Liquid biopsy methods that interrogate cancer-derived genomic alterations in cell-free DNA in blood are being adopted for multi-cancer early detection in human medicine and are now available for veterinary use. The CANcer Detection in Dogs (CANDiD) study is an international, multi-center clinical study designed to validate the performance of a novel multi-cancer early detection "liquid biopsy" test developed for noninvasive detection and characterization of cancer in dogs using next-generation sequencing (NGS) of blood-derived DNA; study results are reported here. In total, 1,358 cancer-diagnosed and presumably cancer-free dogs were enrolled in the study, representing the range of breeds, weights, ages, and cancer types seen in routine clinical practice; 1,100 subjects met inclusion criteria for analysis and were used in the validation of the test. Overall, the liquid biopsy test demonstrated a 54.7% (95% CI: 49.3-60.0%) sensitivity and a 98.5% (95% CI: 97.0-99.3%) specificity. For three of the most aggressive canine cancers (lymphoma, hemangiosarcoma, osteosarcoma), the detection rate was 85.4% (95% CI: 78.4-90.9%); and for eight of the most common canine cancers (lymphoma, hemangiosarcoma, osteosarcoma, soft tissue sarcoma, mast cell tumor, mammary gland carcinoma, anal sac adenocarcinoma, malignant melanoma), the detection rate was 61.9% (95% CI: 55.3-68.1%). The test detected cancer signal in patients representing 30 distinct cancer types and provided a Cancer Signal Origin prediction for a subset of patients with hematological malignancies. Furthermore, the test accurately detected cancer signal in four presumably cancer-free subjects before the onset of clinical signs, further supporting the utility of liquid biopsy as an early detection test. Taken together, these findings demonstrate that NGS-based liquid biopsy can offer a novel option for noninvasive multi-cancer detection in dogs.


Asunto(s)
Hemangiosarcoma , Osteosarcoma , Animales , Biomarcadores de Tumor/genética , Perros , Detección Precoz del Cáncer , Pruebas Hematológicas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biopsia Líquida
3.
Mol Cancer Ther ; 20(11): 2274-2279, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34465593

RESUMEN

When tissue biopsy is not medically prudent or tissue is insufficient for molecular testing, alternative methods are needed. Because cell-free DNA (cfDNA) has been shown to provide a representative surrogate for tumor tissue, we sought to evaluate its utility in this clinical scenario. cfDNA was isolated from the plasma of patients and assayed with low-coverage (∼0.3×), genome-wide sequencing. Copy-number alterations (CNA) were identified and characterized using analytic methods originally developed for noninvasive prenatal testing (NIPT) and quantified using the genomic instability number (GIN), a metric that reflects the quantity and magnitude of CNAs across the genome. The technical variability of the GIN was first evaluated in an independent cohort comprising genome-wide sequencing results from 27,754 women who consented to have their samples used for research and whose NIPT results yielded no detected CNAs to establish a detection threshold. Subsequently, cfDNA sequencing data from 96 patients with known cancers but for whom a tissue biopsy could not be obtained are presented. An elevated GIN was detected in 35% of patients and detection rates varied by tumor origin. Collectively, CNAs covered 96.6% of all autosomes. Survival was significantly reduced in patients with an elevated GIN relative to those without. Overall, these data provide a proof of concept for the use of low-coverage, genome-wide sequencing of cfDNA from patients with cancer to obtain relevant molecular information in instances where tissue is difficult to access. These data may ultimately serve as an informative complement to other molecular tests.


Asunto(s)
Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Variaciones en el Número de Copia de ADN/genética , Neoplasias/genética , Secuenciación Completa del Genoma/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Medicina de Precisión , Adulto Joven
4.
Front Vet Sci ; 8: 704835, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307538

RESUMEN

This proof-of-concept study demonstrates that blood-based liquid biopsy using next generation sequencing of cell-free DNA can non-invasively detect multiple classes of genomic alterations in dogs with cancer, including alterations that originate from spatially separated tumor sites. Eleven dogs with a variety of confirmed cancer diagnoses (including localized and disseminated disease) who were scheduled for surgical resection, and five presumably cancer-free dogs, were enrolled. Blood was collected from each subject, and multiple spatially separated tumor tissue samples were collected during surgery from 9 of the cancer subjects. All samples were analyzed using an advanced prototype of a novel liquid biopsy test designed to non-invasively interrogate multiple classes of genomic alterations for the detection, characterization, and management of cancer in dogs. In five of the nine cancer patients with matched tumor and plasma samples, pre-surgical liquid biopsy testing identified genomic alterations, including single nucleotide variants and copy number variants, that matched alterations independently detected in corresponding tumor tissue samples. Importantly, the pre-surgical liquid biopsy test detected alterations observed in spatially separated tissue samples from the same subject, demonstrating the potential of blood-based testing for comprehensive genomic profiling of heterogeneous tumors. Among the three patients with post-surgical blood samples, genomic alterations remained detectable in one patient with incomplete tumor resection, suggesting utility for non-invasive detection of minimal residual disease following curative-intent treatment. Liquid biopsy allows for non-invasive profiling of cancer-associated genomic alterations with a simple blood draw and has potential to overcome the limitations of tissue-based testing posed by tissue-level genomic heterogeneity.

5.
Mol Cancer Ther ; 18(2): 448-458, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30523049

RESUMEN

Inhibitors of the PD-1/PD-L1/CTLA-4 immune checkpoint pathway have revolutionized cancer treatment. Indeed, some patients with advanced, refractory malignancies achieve durable responses; however, only a subset of patients benefit, necessitating new biomarkers to predict outcome. Interrogating cell-free DNA (cfDNA) isolated from plasma (liquid biopsy) provides a promising method for monitoring response. We describe the use of low-coverage, genome-wide sequencing of cfDNA, validated extensively for noninvasive prenatal testing, to detect tumor-specific copy-number alterations, and the development of a new metric-the genome instability number (GIN)-to monitor response to these drugs. We demonstrate how the GIN can be used to discriminate clinical response from progression, differentiate progression from pseudoprogression, and identify hyperprogressive disease. Finally, we provide evidence for delayed kinetics in responses to checkpoint inhibitors relative to molecularly targeted therapies. Overall, these data demonstrate a proof of concept for using this method for monitoring treatment outcome in patients with cancer receiving immunotherapy.


Asunto(s)
Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Secuenciación Completa del Genoma/métodos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Estudios Prospectivos , Análisis de Supervivencia , Resultado del Tratamiento
6.
Cell Rep ; 13(9): 1868-80, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655902

RESUMEN

Genes expressing circadian RNA rhythms are enriched for metabolic pathways, but the adaptive significance of cyclic gene expression remains unclear. We estimated the genome-wide synthetic and degradative cost of transcription and translation in three organisms and found that the cost of cycling genes is strikingly higher compared to non-cycling genes. Cycling genes are expressed at high levels and constitute the most costly proteins to synthesize in the genome. We demonstrate that metabolic cycling is accelerated in yeast grown under higher nutrient flux and the number of cycling genes increases ∼40%, which are achieved by increasing the amplitude and not the mean level of gene expression. These results suggest that rhythmic gene expression optimizes the metabolic cost of global gene expression and that highly expressed genes have been selected to be downregulated in a cyclic manner for energy conservation.


Asunto(s)
Metabolismo Energético/genética , Redes Reguladoras de Genes , Genoma , Animales , Ritmo Circadiano/fisiología , Drosophila/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Proteoma/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma
7.
Methods Enzymol ; 551: 285-321, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25662462

RESUMEN

Genome-wide analyses have revolutionized our ability to study the transcriptional regulation of circadian rhythms. The advent of next-generation sequencing methods has facilitated the use of two such technologies, ChIP-seq and RNA-seq. In this chapter, we describe detailed methods and protocols for these two techniques, with emphasis on their usage in circadian rhythm experiments in the mouse liver, a major target organ of the circadian clock system. Critical factors for these methods are highlighted and issues arising with time series samples for ChIP-seq and RNA-seq are discussed. Finally, detailed protocols for library preparation suitable for Illumina sequencing platforms are presented.


Asunto(s)
Relojes Circadianos , Regulación de la Expresión Génica , Acetilación , Animales , Proteínas CLOCK/aislamiento & purificación , Proteínas CLOCK/metabolismo , Línea Celular , Inmunoprecipitación de Cromatina , Histonas/metabolismo , Humanos , Metilación , Procesamiento Proteico-Postraduccional , Análisis de Secuencia de ARN , Transcripción Genética
8.
FEBS J ; 280(12): 2900-15, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23601781

RESUMEN

Folic acid is an essential vitamin required for de novo biosynthesis of nucleotides and amino acids. The proton-coupled folate transporter (PCFT; SLC46A1) has been identified as the major contributor for intestinal folate uptake. It is also involved in folate transport across the blood-brain barrier and into solid tumors. PCFT belongs to the major facilitator superfamily. Major facilitator superfamily members can exist in either monomeric or homo-oligomeric form. Here, we utilized blue native polyacrylamide gel electrophoresis (BN/PAGE) and crosslinking with bi-functional chemicals to investigate the quaternary structure of human PCFT after heterologous expression in Xenopus laevis oocytes and CHO cells. PCFT was expressed in the plasma membrane in both expression systems. The functionality of the utilized PCFT construct was confirmed in oocytes by folic acid induced currents at acidic pH. For both the oocyte and CHO expression system [(3)H]folic acid uptake studies indicated that PCFT was functional. To analyze the oligomeric state of PCFT in the plasma membrane, plasma membranes were isolated by polymerization with colloidal silica and polyacrylic acid and subsequent centrifugation. The digitonin-solubilized non-denatured PCFT migrated during BN/PAGE as a monomer, as judged by comparison with a membrane protein (5-HT(3A) receptor) of known pentameric assembly that was used to create a molecular sizing ladder. The chemical crosslinkers glutaraldehyde and dimethyl adipimidate were not able to covalently link potential higher order PCFT structures to form oligomers that were stable following SDS treatment. Together, our results demonstrate that plasma-membrane PCFT functions as a monomeric protein.


Asunto(s)
Membrana Celular/metabolismo , Transportador de Folato Acoplado a Protón/metabolismo , Animales , Transporte Biológico , Células CHO , Calibración , Cricetinae , Electroforesis en Gel de Poliacrilamida/normas , Femenino , Ácido Fólico/metabolismo , Glicosilación , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Potenciales de la Membrana , Peso Molecular , Oocitos/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Transportador de Folato Acoplado a Protón/química , Estándares de Referencia , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...